

Learning Heuristics for Planning with Hypergraph Networks

William Shen Supervisors: Felipe Trevizan, Sylvie Thiébaux ^{7th November 2019}

What is Planning?

• **Decision making** - reasoning about what actions to take

Mars Exploration Rover (2003)

Elevator Control

State-of-the-art Planners

• Heuristic Search

- A heuristic is an estimate of the 'cost-to-go' (rules out unpromising regions of the search space)
- Use a heuristic to guide forward state space search

• End-to-End Machine Learning

- Action-Schema Networks [Toyer et al. AAAI'18]
- Deep Reactive Policies
- *Imitate* the actions of an expert (i.e. heuristic search planner)
- What about learning a heuristic?

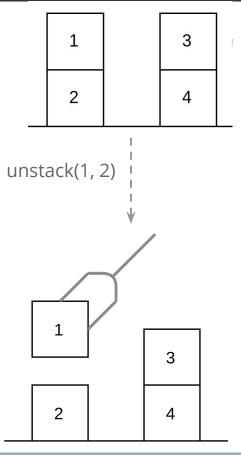
Outline

- Background on Planning and Heuristics
- Contribution: Hypergraph Networks
 - 1. Framework for Deep Learning over Hypergraphs
 - 2. STRIPS-HGN: learning heuristics for planning
- Experimental Results
- Future Work

STRIPS

- Finite set of states and actions
- A state is composed of positive propositions
 on(1, 2) ontable(2) ontable(4) etc.
- An action has:
 - Preconditions
 - Effects
 - Positive Effects
 - Negative Effects

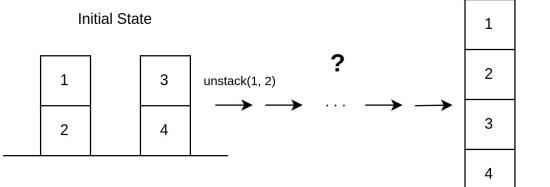
unstack(1, 2) PRE: on(1, 2), clear(1) ... EFF: holding(1) clear(2) ¬on(1, 2) ...



STRIPS

Goal State

- Initial State
- Goal States
- Cost Function
- **Objective**: move from initial state to a goal state with minimal cost



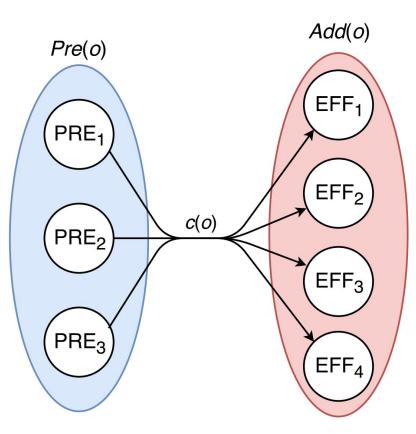
Heuristics

- Domain-Dependent
 - Generalises to problems from same domain
- Domain-Independent
 - Generalises to problems from multiple domains

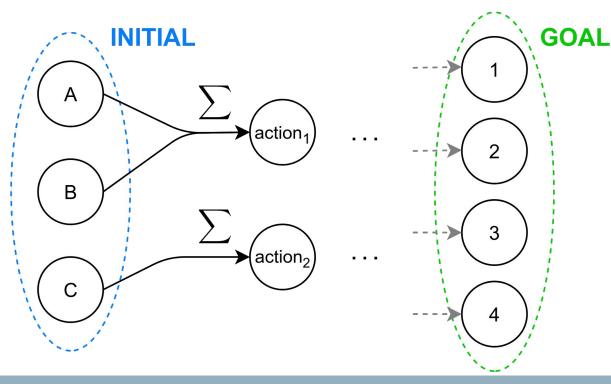
- **Delete-Relaxation Heuristics**: ignore negative effects
 - Approximate the shortest path from initial to goal state
 - Polynomial time to calculate a heuristic (vs exponential)

Hypergraphs

- Hyperedge
 - Edge that joins any number of vertices
- STRIPS Action
 - Preconditions
 - Effects
 - Positive
 - Negative Ignore!
 - Cost



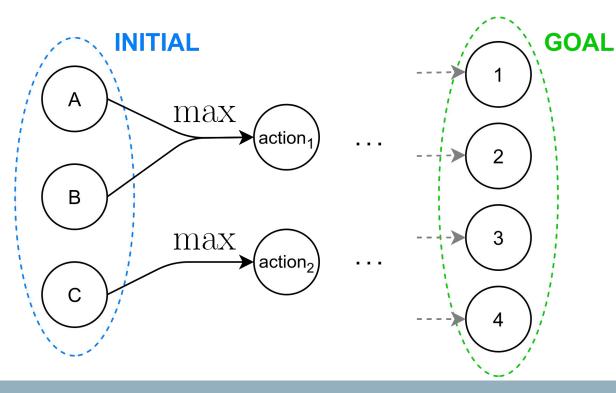
h^{add} heuristic



 $h^{\mathrm{add}}(s) = \sum_{i=1}^{n}$ $h^{\mathrm{add}}($ (s;g] $g \in G$ cost of achieving g

- Estimate cost of goal as sum of costs of each proposition
- Assumes achieving each proposition is independent
 - Overcounting
 - Non-admissible!

h^{max} heuristic

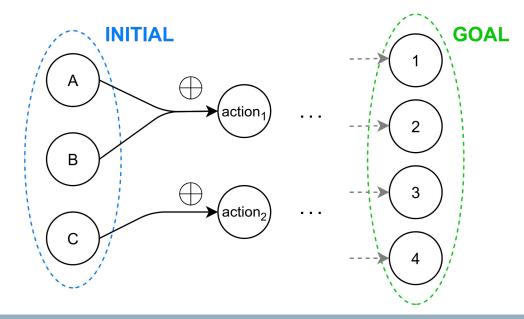


$$h^{\max}(s) = \max_{g \in G} \quad \underbrace{h^{\max}(s;g)}_{I \to I}$$

cost of achieving g

- Estimate cost of goal as the most expensive goal proposition
- Admissible but not as informative as *h*^{add}

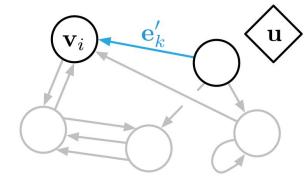
Learning Hypergraph Heuristics

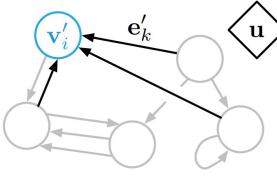


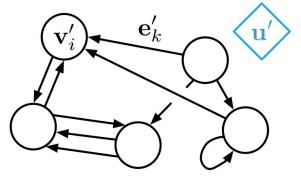
Hypergraph Networks (HGN)

- Our generalisation of Graph Networks [Battaglia et al. 2018] to hypergraphs
- Generalises and extends existing deep learning models
- Powerful and flexible building blocks
- Hypergraph Network Block
 - Hypergraph-to-Hypergraph mapping
 - Update functions: compute per-hyperedge and per-vertex updates

Hypergraph Networks (HGN)







(a) Edge update

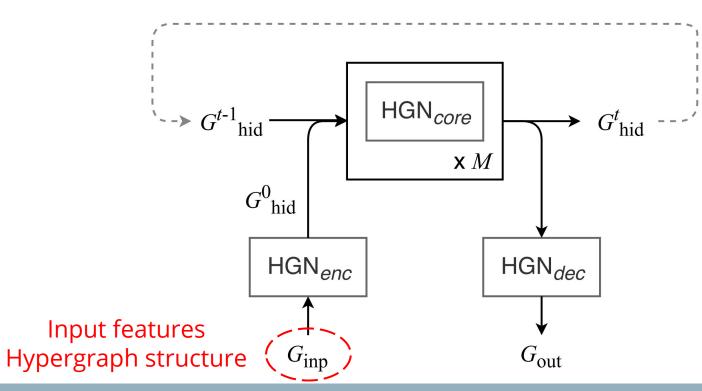
(b) Node update

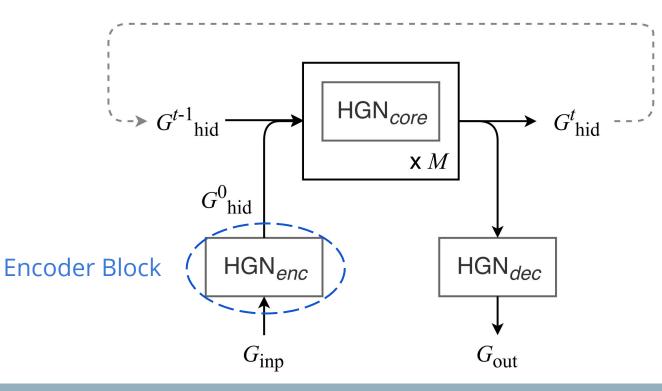
(c) Global update

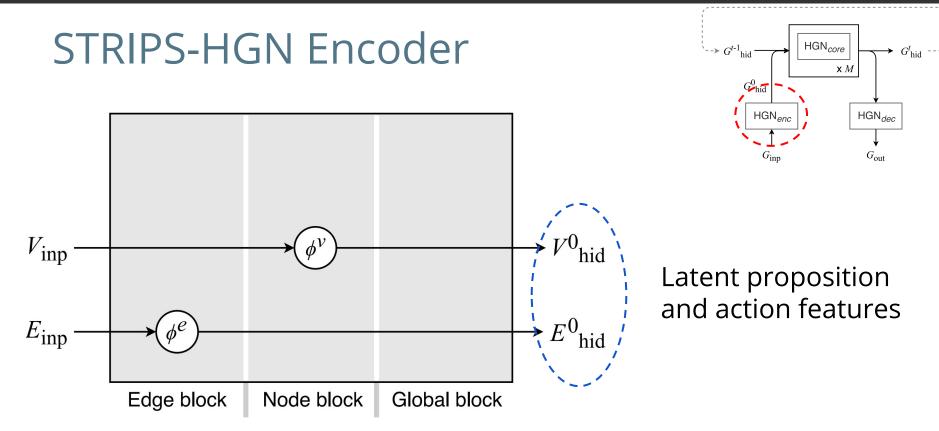
Analogous to Message Passing

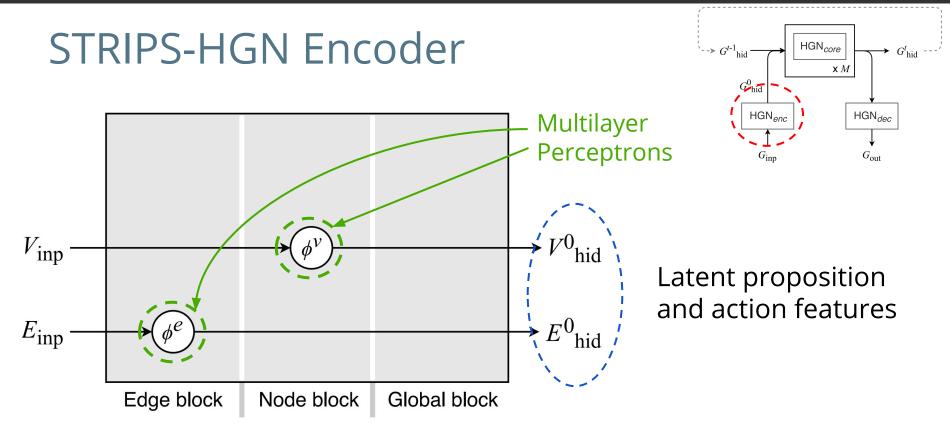
Figure from Battaglia et al. 2018

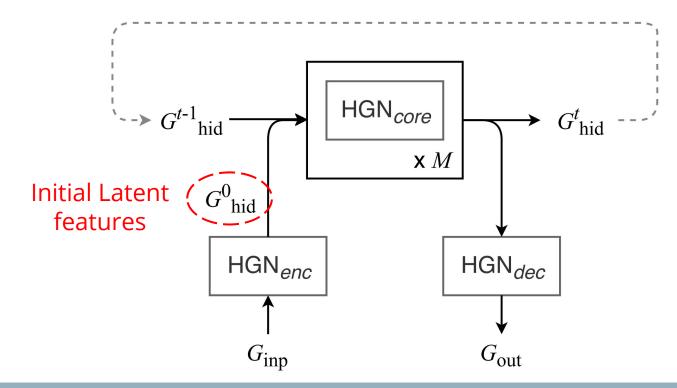


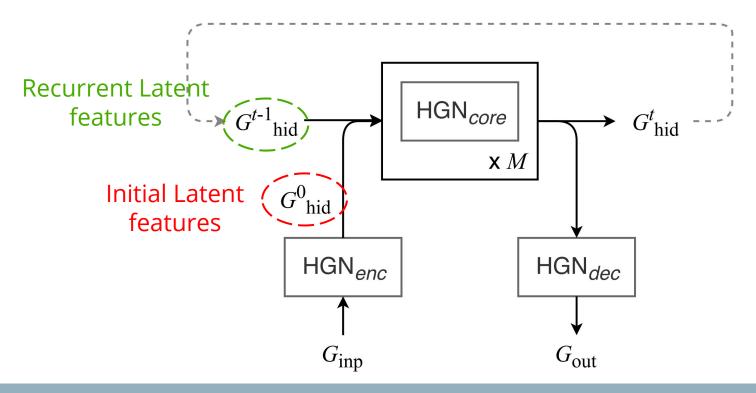


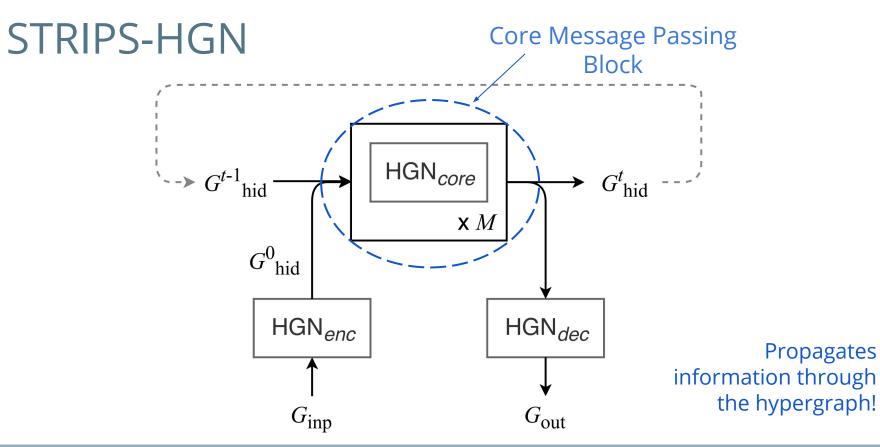


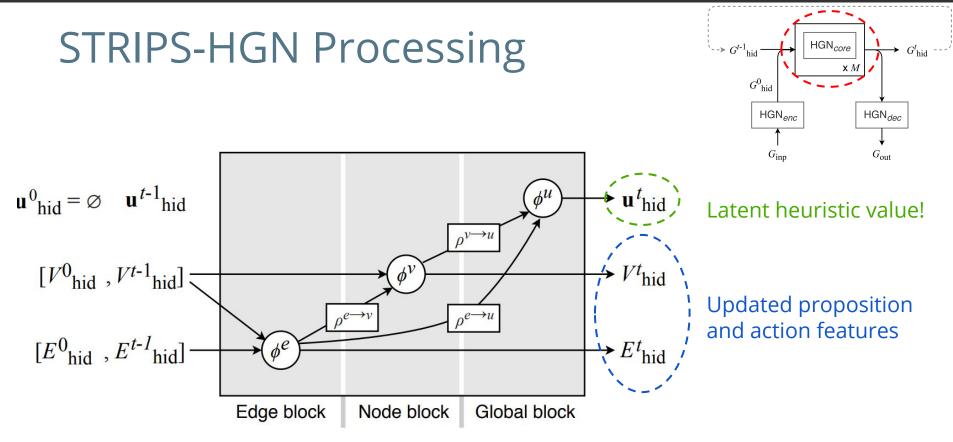


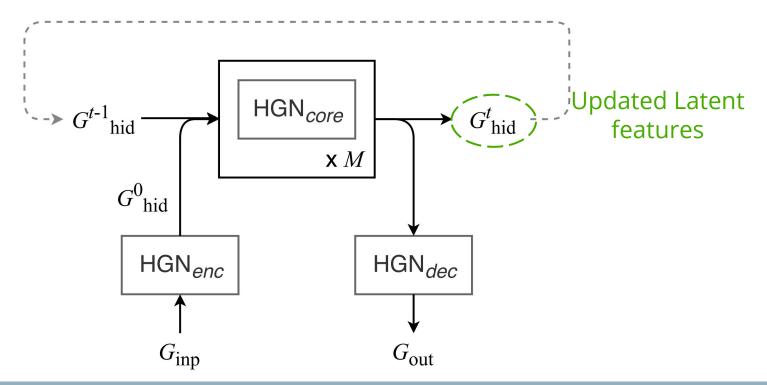


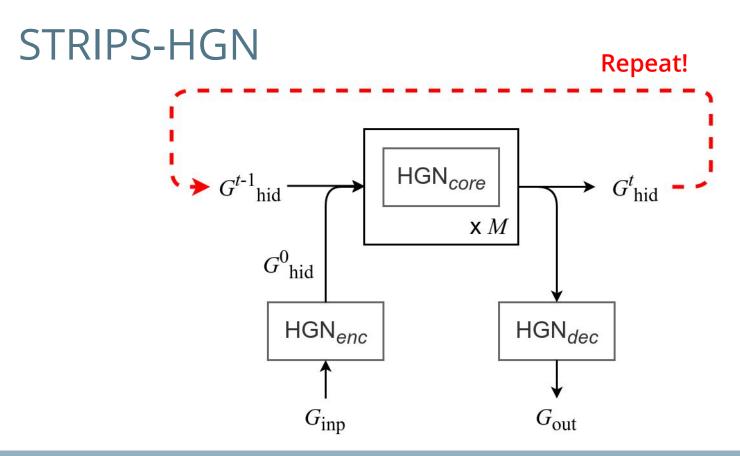


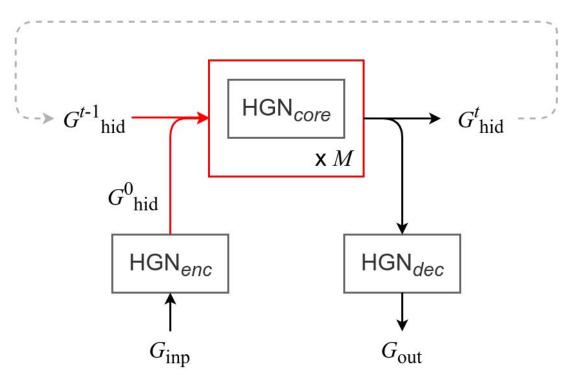


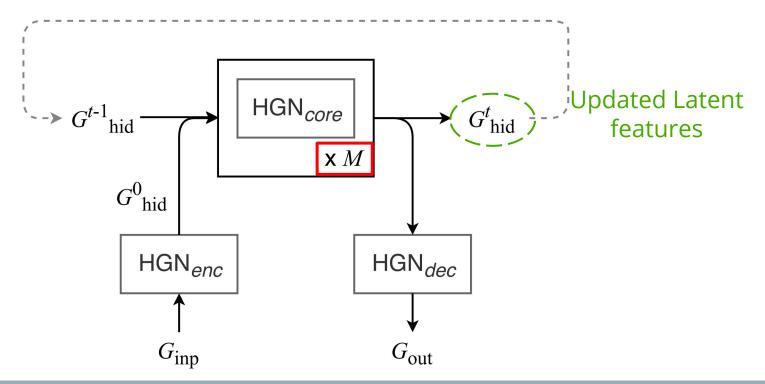


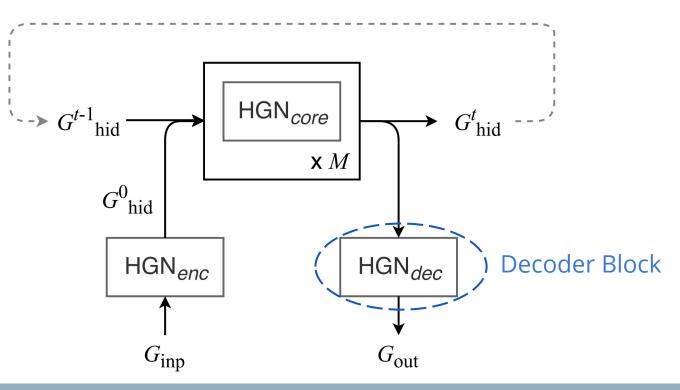


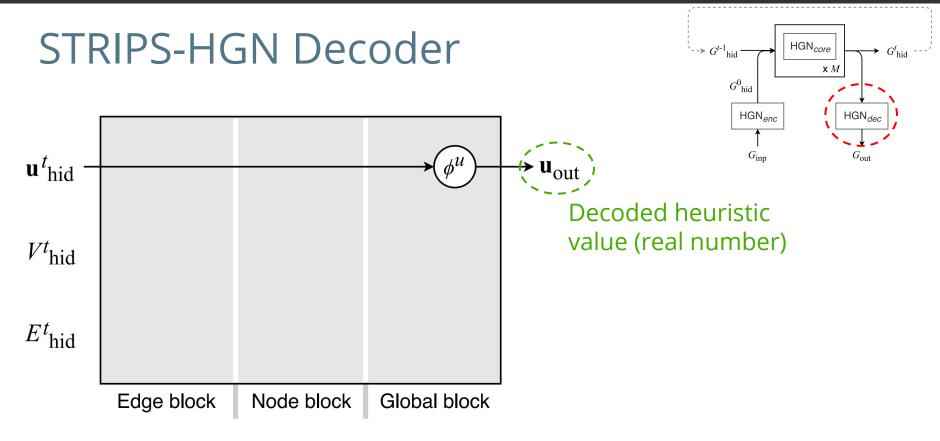












Training a STRIPS-HGN

- Input Features whether proposition is in initial or goal state
 - Learning heuristics from scratch!
- Generate Training Data
 - Run an optimal planner for a set of problems
 - Use the states encountered in the optimal plans
 - Aim to learn the optimal heuristic value
- Train using Gradient Descent
 - Adam Optimiser with Mean Squared Error loss
 - Custom Stratified K-Fold with Binning

Experimental Results

- Evaluate using A* Search
- Baseline Heuristics
 - h^{add} (inadmissible), h^{max} and Landmark Cut (admissible)
- **STRIPS-HGN**: *h*^{spatial}
 - Run core block 10 times
 - Powerful generalisation but slower to compute

Experiments

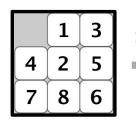
Domain-Dependent	Domain-Dependent
Same size problems	Problems with different sizes
Domain-Independent	Domain-Independent
Domain-Independent Known domains	Domain-Independent Unknown domains

Experiments

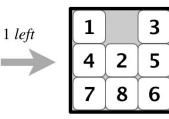
Domain-Dependent 1	Domain-Dependent
Same size problems	Problems with different sizes
Domain-Independent 2	Domain-Independent 3
Domain-Independent 2 Known domains	Domain-Independent 3 Unknown domains

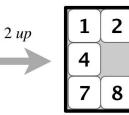
8-puzzle

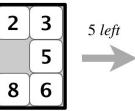
- Train on 10 random problems
- Evaluate on 50 random problems
- Training time: 100 minutes (10 minutes per network)
- Learn a Problem-Size Dependent Heuristic!

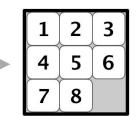


initial







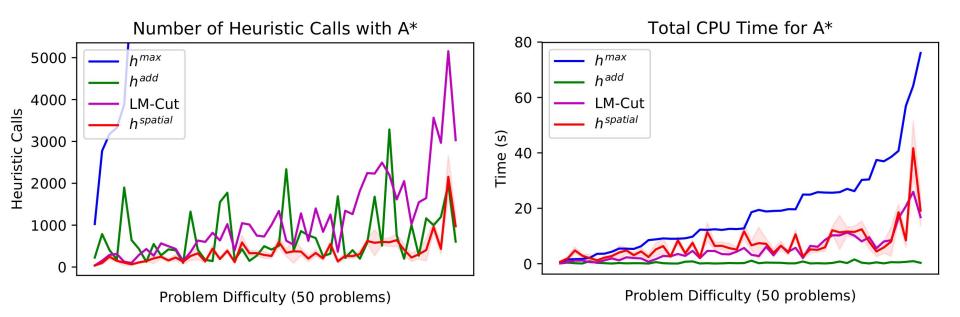


6 *up*

goal

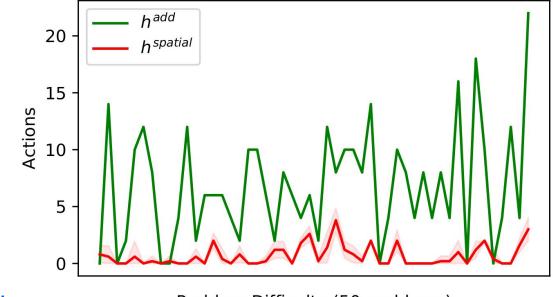
Figure from: <u>https://www.cs.princeton.edu/courses/archive/</u> <u>spring18/cos226/assignments/8puzzle/index.html</u>

Results - 8-puzzle



Results - 8-puzzle

Deviation from Optimal Plan Length with A*

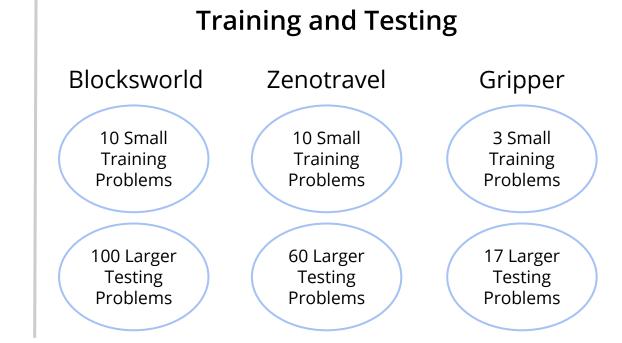


Lower the better!

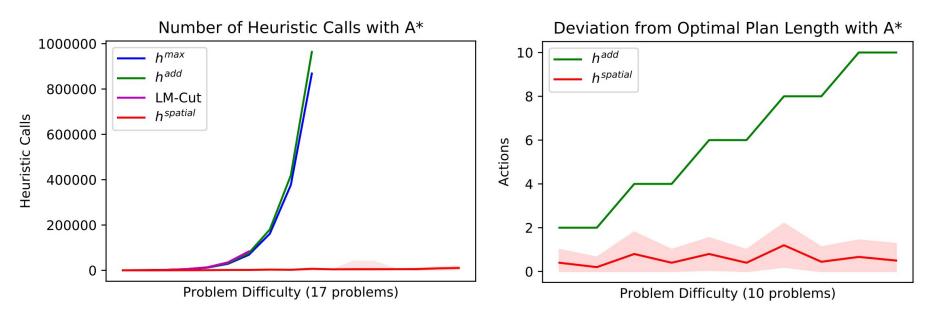
Problem Difficulty (50 problems)

Training/Evaluating on Multiple Domains

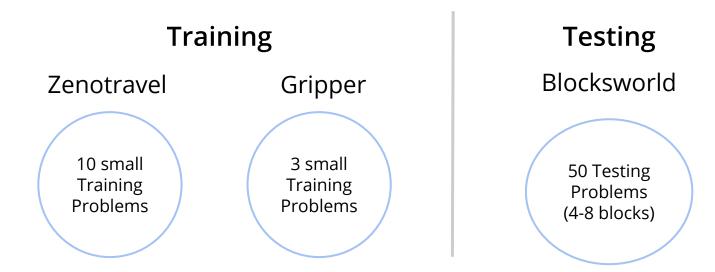
- Train and evaluate a single network on 3 domains
- Training time: 150 minutes (15 minutes per network)
- Learn a Domain-Independent Heuristic



Multi-Domain Gripper

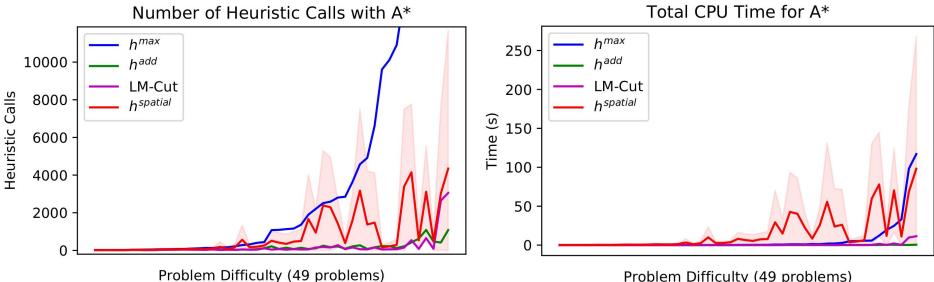


Evaluating on Unseen Domains



- Training time: 100 minutes (10 minutes per network)
- Learn a Domain-Independent Heuristic

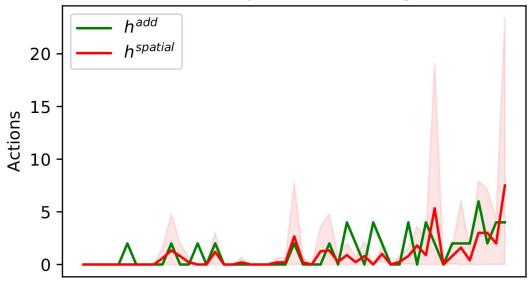
Unseen Blocksworld



Problem Difficulty (49 problems)

Unseen Blocksworld

Deviation from Optimal Plan Length with A*



Problem Difficulty (49 problems)

Future Work

- Using richer input features
 - e.g. Derived from existing planning heuristics

• Speeding up a STRIPS-HGN

- Currently limited by Hypergraph size \rightarrow pruning?
- Learn a policy instead i.e. actions
- Extend STRIPS-HGN to Probabilistic Planning
 - Existing heuristics are either expensive to compute or use *determinisation*

Thanks Any questions?

References

- Battaglia et al. 2018, Relational inductive biases, deep learning, and graph networks.
- Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L., 2019. ASNets: Deep Learning for Generalised Planning.
- Slide 3 Mars Exploration Rover <u>https://www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.html</u>
- Slide 3 Elevator: <u>https://pixabay.com/photos/elevators-lobby-entrance-1756630/</u>