# Guiding Search with Generalized Policies for Probabilistic Planning

William Shen<sup>1</sup>, Felipe Trevizan<sup>1</sup>, Sam Toyer<sup>2</sup>, Sylvie Thiébaux<sup>1</sup> and Lexing Xie<sup>1</sup>





### Motivation

- Action Schema Networks (ASNets)
  - Pro: Train on limited number of small problems to learn local knowledge, and generalize to problems of any size
  - Con: Suboptimal network, poor choice of hyperparameters, etc.
- Monte-Carlo Tree Search (MCTS) and UCT
  - Pro: Very powerful in exploring the state space of the problem
  - Con: Requires a large number of rollouts to converge to the optimum
- Combine UCT with ASNets to get the best of both worlds, and overcome their shortcomings.

# Stochastic Shortest Path (SSP)



### An SSP is a tuple $\langle S, s_0, G, A, P, C \rangle$

- finite set of states S  $\longrightarrow$  s = {on(a, b), on(c, d), ...}
- initial state  $s_0 \in S$
- set of goal states  $G \subseteq S$  pickup, putdown,
- finite set of actions  $A \longrightarrow$  stack, unstack



- cost function  $C(s, a) \in (0, \infty)$  for most problems, c(s, a) = 1
- Solution to a SSP: stochastic policy  $\pi(a \mid s) \in [0, 1]$ 
  - $\circ$  SSPs have a deterministic optimal policy  $\pi^*$



Toyer et al. 2018. In AAAI



Proposition truth values, goal information (LM-Cut features)

Weight sharing between certain modules in the same layer. Scale up to problems with any number of actions and propositions.

Dutput stochastic policy

- Pros: Learns a generalized policy for a given planning domain
  - Policy can be applied to any problem in the domain
  - Learns domain-specific knowledge
  - ASNets learn a 'trick' to easily solve every problem in the domain
  - Train on small problems, scale up to large problems without retraining

#### Cons:

- Fixed number of layers, limited receptive field
- Poor choice of hyperparameters, undertraining/overtraining
- Unrepresentative training set
- No generally applicable 'trick' to solve problems in a domain

# Monte-Carlo Tree Search (MCTS)

#### Sample and score trajectories



### **Selection Phase**

- Selection Expansion Simulation Backpropagation
- Balance exploration and exploitation
  - Upper Confidence Bound 1 Applied to Trees (UCT)



# **Backpropagation Phase**

- Selection Expansion Simulation Backpropagation

  TS)
- Trial-Based Heuristic Tree Search (THTS) (Keller & Helmert. 2013. ICAPS)
  - Ingredient-based framework to define trial-based heuristic search algorithms

#### Dynamic Programming UCT (DP-UCT)

- Uses Bellman backups
  - Known transition function
- UCT\* variant where trial length is 0
  - Baseline algorithm

### **Simulation Phase**

- Selection Expansion Simulation Backpropagation

  Me
- THTS alternates between action and outcome selection using the heuristic function
- Re-introduce the Simulation Phase:
  - Perform rollouts using the Simulation Function
  - Traditional MCTS algorithms use a random simulation function
- Why? Current heuristics are not quite informative because of dead ends.
  - Underestimate probability of reaching dead end
  - Very optimistic about avoiding dead ends

# **Combining ASNets and UCT**

- Learn what an ASNet has not learned
- Improve suboptimal learning
- 3. Robust to changes in the environment or domain





# Using ASNets as a Simulation Function

- Max-ASNet: select action in the policy with the highest probability
- **Stochastic-ASNet:** sample an action in the policy using the probability distribution
- Not very robust if policy is uninformative/misleading

$$\pi(s) = \begin{cases} 0.4 : stack(a, b) & \text{Max-ASNet: argmax } \pi(a|s) \\ 0.1 : stack(a, d) & \\ 0.2 : put-down(a) & \text{Stochastic-ASNet: sample from } \pi(s) \\ 0.3 : stack(a, c) & \end{cases}$$

# **Using ASNets in UCB1**



- Need to maintain balance between exploration and exploitation
- Add exploration bonus that converges to zero as action applied infinitely often more robust

been applied in state





- In Simple-ASNets, a network's policy is only considered after all actions have been explored at least once
- Ranked-ASNet action selection:
  - Select unvisited actions by their probability (ranking) in the policy
- Focus initial stages of search on actions an ASNet suggests

$$\pi(s) = \begin{cases} 0.4 : stack(a, b) & 1st \\ 0.1 : stack(a, d) & 4th \\ 0.2 : put-down(a) & 3rd \\ 0.3 : stack(a, c) & 2nd \end{cases}$$

### **Evaluation**

#### Three experiments

- Each designed to test whether we can achieve the 3 goals
- Maximize the quality of the search in the limited computation time

#### Recall our goals

- Learn what ASNets have not learned
- Improve suboptimal learning
- Robust to changes in the environment or domain

# Improving on the Generalized Policy

#### **Objectives:**

- Learn what we have not learned
- Improve suboptimal learning
- Exploding Blocksworld extension of Blocksworld with dead-ends and probabilities
- Very difficult for ASNets
  - Each problem may have its own 'trick'
  - Training set may not be representative of test set
- Can the limited knowledge learned by the network help UCT?

# Improving on the Generalized Policy

#### Coverage over 30 runs for a subset of problems

| Planner/Prob.                   | p02   | p04   | p06   | p08   |  |
|---------------------------------|-------|-------|-------|-------|--|
| ASNets                          | 10/30 | 0/30  | 19/30 | 0/30  |  |
| UCT*                            | 9/30  | 11/30 | 28/30 | 5/30  |  |
| Ranked ASNets ( <i>M</i> = 10)  | 6/30  | 10/30 | 25/30 | 4/30  |  |
| Ranked ASNets ( <i>M</i> = 50)  | 10/30 | 15/30 | 27/30 | 10/30 |  |
| Ranked ASNets ( <i>M</i> = 100) | ·     |       | 29/30 | 4/30  |  |

For results for full set of problems, please see our paper.

# **Combating an Adversarial Training Set**

#### **Objectives:**

- Learn what we have not learned
- Robust to changes in the environment or domain

TRAINING



- Train network to unstack blocks
- Test network to stack blocks
- Worst-case scenario for inductive learners

**TESTING** 



# **Combating an Adversarial Training Set**

#### Coverage over 30 runs



# **Exploiting the Generalized Policy**

- CosaNostra Pizza new domain introduced by Toyer et al. (2018)
  - Probabilistically interesting (has dead ends)
  - Optimal policy: pay toll operator only on trip to customer
- ASNets is able to learn the 'trick' to pay the toll operator only on the trip to the customer, and scales up to problems of any size
- Challenging for SSP heuristics (determinization, delete relaxation)
- Requires extremely long reasoning chains



# **Exploiting the Generalized Policy**

#### Coverage over 30 runs



### **Conclusion and Future Work**

- Demonstrated how to leverage generalized policies in UCT
  - Simulation Function: Stochastic and Max ASNets
  - Action Selection: Simple and Ranked ASNets
- Initial experimental results showing efficacy of approach
- Future Work
  - 'Teach' UCT when to play actions/arms suggested by ASNets
  - Automatically adjust influence constant M, mix ASNet-based simulations with random simulations
  - Interleave training of ASNets with execution of ASNets + UCT

# Thanks!

**Any Questions?** 

### References

- MCTS Diagram: Monte-Carlo tree search in backgammon on ResearchGate
- CosaNostra Pizza Diagram: <u>ASNets presentation</u> on GitHub
- ASNets and associated diagrams: Toyer, S.; Trevizan, F.; Thiebaux, S.; and Xie, L. 2018. <u>Action Schema Networks: Generalised Policies with Deep</u> <u>Learning</u>. In AAAI.
- Trial Based Heuristic Tree Search: Keller, T., and Helmert, M. 2013.
   Trial-Based Heuristic Tree Search for Finite Horizon MDPs. In ICAPS.
- Triangle Tireworld: Little, I., and Thiebaux, S. 2007. <u>Probabilistic Planning vs.</u> <u>Replanning</u>. In ICAPS Workshop on IPC: Past, Present and Future

### Stack Blocksworld - Additional Results



## **Exploding Blocksworld - Additional Results**

| Planner/Prob.           | p01                 | p02                  | p03                   | p04                  | p05               | p06                 | p07                 | p08                  |
|-------------------------|---------------------|----------------------|-----------------------|----------------------|-------------------|---------------------|---------------------|----------------------|
| ASNets                  | 16/30               | 10/30                | 6/30                  |                      | 30/30             | 19/30               |                     |                      |
|                         | $8.0 \pm 0.0$       | $12.0 \pm 0.0$       | $10.0 \pm 0.0$        | -                    | $6.0 \pm 0.0$     | $12.0 \pm 0.0$      | -                   | -                    |
|                         | $0.18 \pm 0.14$ s   | $0.17 \pm 0.01s$     | $0.2 \pm 0.04$ s      |                      | $0.19 \pm 0.07$ s | $0.42 \pm 0.12s$    |                     |                      |
| UCT*                    | 26/30               | 9/30                 | 13/30                 | 11/30                | 30/30             | 28/30               | 30/30               | 5/30                 |
|                         | $10.92 \pm 0.52$    | $18.22 \pm 1.62$     | $25.23 \pm 8.86$      | $14.55 \pm 0.63$     | $6.13 \pm 0.19$   | $13.93 \pm 0.8$     | $13.0 \pm 0.73$     | $36.4 \pm 5.09$      |
|                         | $102.51 \pm 5.24$ s | $175.01 \pm 16.24$ s | $222.27 \pm 88.77s$   | $136.46 \pm 6.75$ s  | $36.51 \pm 2.4$ s | $132.36 \pm 8.11s$  | $107.11 \pm 6.95$ s | $335.87 \pm 54.56$ s |
| Ranked ASNets $M = 10$  | 25/30               | 6/30                 | 11/30                 | 10/30                | 30/30             | 25/30               | 30/30               | 4/30                 |
|                         | $10.96 \pm 0.48$    | $17.0 \pm 3.45$      | $30.0 \pm 13.64$      | $14.4 \pm 0.6$       | $6.0 \pm 0.0$     | $13.6 \pm 0.83$     | $12.07 \pm 0.14$    | $35.0 \pm 7.58$      |
|                         | $100.21 \pm 6.01$ s | $164.77 \pm 34.89$ s | $280.25 \pm 135.07$ s | $125.74 \pm 11.93$ s | $38.11 \pm 1.17s$ | $113.56 \pm 8.11s$  | $116.36 \pm 1.4s$   | $340.82 \pm 75.18s$  |
| Ranked ASNets $M = 50$  | 23/30               | 10/30                | 14/30                 | 15/30                | 30/30             | 27/30               | 30/30               | 10/30                |
|                         | $11.04 \pm 0.58$    | $17.6 \pm 2.85$      | $35.71 \pm 7.87$      | $14.4 \pm 0.46$      | $6.0 \pm 0.0$     | $13.33 \pm 0.76$    | $12.07 \pm 0.14$    | $38.6 \pm 0.97$      |
|                         | $94.17 \pm 6.51s$   | $166.29 \pm 27.91$ s | $352.14 \pm 78.66s$   | $123.06 \pm 5.75$ s  | $38.85 \pm 1.15s$ | $127.69 \pm 7.59s$  | $102.57 \pm 1.38s$  | $374.93 \pm 12.01s$  |
| Ranked ASNets $M = 100$ | 25/30               | 12/30                | 14/30                 | 10/30                | 30/30             | 29/30               | 30/30               | 4/30                 |
|                         | $11.04 \pm 0.48$    | $17.33 \pm 2.44$     | $28.43 \pm 6.54$      | $14.6 \pm 0.69$      | $6.0 \pm 0.0$     | $13.38 \pm 0.74$    | $12.33 \pm 0.28$    | $36.5 \pm 9.14$      |
|                         | $105.26 \pm 4.83$ s | $167.75 \pm 24.5$ s  | $259.18 \pm 65.16$ s  | $126.61 \pm 6.41$ s  | $39.41 \pm 1.08s$ | $111.66 \pm 7.15$ s | $103.56 \pm 3.16s$  | $344.06 \pm 93.88s$  |

1st line is coverage, 2nd and 3rd lines of each cell show the mean cost and mean time to reach a goal, respectively, and their associated 95% confidence interval.

#### CosaNostra Pizza - Additional Results



### **Triangle Tireworld**

One-way roads, goal is navigate from start to the goal

goal

Black nodes indicate locations with a spare tyre

 50% probability that you will get a flat tyre when you move from one location to another

 Optimal policy is to navigate along the edge of the triangle to avoid dead ends



# **Triangle Tireworld - Results**

Problem Size



Problem Size

- Neural Network Architecture inspired by CNNs
- Action Schemas



- Sparse Connections
  - "Action  $\alpha$  affects proposition p", and vice-versa
  - Only connect action and proposition modules if they appear in the action schema of the module.

- Weight sharing. In one layer, share weights between:
  - Action modules instantiated from the same action schema
  - Proposition modules that correspond to the same predicate





Action modules for (unstack a b), (unstack c d), etc. share weights Proposition modules for (on a b), (on c d), (on d e), etc. share weights



How to overcome fixed receptive field? Use search!