Guiding Search with Generalized Policies for Probabilistic Planning William Shen¹, Felipe Trevizan¹, Sam Toyer², Sylvie Thiébaux¹ and Lexing Xie¹ ### Motivation - Action Schema Networks (ASNets) - Pro: Train on limited number of small problems to learn local knowledge, and generalize to problems of any size - Con: Suboptimal network, poor choice of hyperparameters, etc. - Monte-Carlo Tree Search (MCTS) and UCT - Pro: Very powerful in exploring the state space of the problem - Con: Requires a large number of rollouts to converge to the optimum - Combine UCT with ASNets to get the best of both worlds, and overcome their shortcomings. # Stochastic Shortest Path (SSP) ### An SSP is a tuple $\langle S, s_0, G, A, P, C \rangle$ - finite set of states S \longrightarrow s = {on(a, b), on(c, d), ...} - initial state $s_0 \in S$ - set of goal states $G \subseteq S$ pickup, putdown, - finite set of actions $A \longrightarrow$ stack, unstack - cost function $C(s, a) \in (0, \infty)$ for most problems, c(s, a) = 1 - Solution to a SSP: stochastic policy $\pi(a \mid s) \in [0, 1]$ - \circ SSPs have a deterministic optimal policy π^* Toyer et al. 2018. In AAAI Proposition truth values, goal information (LM-Cut features) Weight sharing between certain modules in the same layer. Scale up to problems with any number of actions and propositions. Dutput stochastic policy - Pros: Learns a generalized policy for a given planning domain - Policy can be applied to any problem in the domain - Learns domain-specific knowledge - ASNets learn a 'trick' to easily solve every problem in the domain - Train on small problems, scale up to large problems without retraining #### Cons: - Fixed number of layers, limited receptive field - Poor choice of hyperparameters, undertraining/overtraining - Unrepresentative training set - No generally applicable 'trick' to solve problems in a domain # Monte-Carlo Tree Search (MCTS) #### Sample and score trajectories ### **Selection Phase** - Selection Expansion Simulation Backpropagation - Balance exploration and exploitation - Upper Confidence Bound 1 Applied to Trees (UCT) # **Backpropagation Phase** - Selection Expansion Simulation Backpropagation TS) - Trial-Based Heuristic Tree Search (THTS) (Keller & Helmert. 2013. ICAPS) - Ingredient-based framework to define trial-based heuristic search algorithms #### Dynamic Programming UCT (DP-UCT) - Uses Bellman backups - Known transition function - UCT* variant where trial length is 0 - Baseline algorithm ### **Simulation Phase** - Selection Expansion Simulation Backpropagation Me - THTS alternates between action and outcome selection using the heuristic function - Re-introduce the Simulation Phase: - Perform rollouts using the Simulation Function - Traditional MCTS algorithms use a random simulation function - Why? Current heuristics are not quite informative because of dead ends. - Underestimate probability of reaching dead end - Very optimistic about avoiding dead ends # **Combining ASNets and UCT** - Learn what an ASNet has not learned - Improve suboptimal learning - 3. Robust to changes in the environment or domain # Using ASNets as a Simulation Function - Max-ASNet: select action in the policy with the highest probability - **Stochastic-ASNet:** sample an action in the policy using the probability distribution - Not very robust if policy is uninformative/misleading $$\pi(s) = \begin{cases} 0.4 : stack(a, b) & \text{Max-ASNet: argmax } \pi(a|s) \\ 0.1 : stack(a, d) & \\ 0.2 : put-down(a) & \text{Stochastic-ASNet: sample from } \pi(s) \\ 0.3 : stack(a, c) & \end{cases}$$ # **Using ASNets in UCB1** - Need to maintain balance between exploration and exploitation - Add exploration bonus that converges to zero as action applied infinitely often more robust been applied in state - In Simple-ASNets, a network's policy is only considered after all actions have been explored at least once - Ranked-ASNet action selection: - Select unvisited actions by their probability (ranking) in the policy - Focus initial stages of search on actions an ASNet suggests $$\pi(s) = \begin{cases} 0.4 : stack(a, b) & 1st \\ 0.1 : stack(a, d) & 4th \\ 0.2 : put-down(a) & 3rd \\ 0.3 : stack(a, c) & 2nd \end{cases}$$ ### **Evaluation** #### Three experiments - Each designed to test whether we can achieve the 3 goals - Maximize the quality of the search in the limited computation time #### Recall our goals - Learn what ASNets have not learned - Improve suboptimal learning - Robust to changes in the environment or domain # Improving on the Generalized Policy #### **Objectives:** - Learn what we have not learned - Improve suboptimal learning - Exploding Blocksworld extension of Blocksworld with dead-ends and probabilities - Very difficult for ASNets - Each problem may have its own 'trick' - Training set may not be representative of test set - Can the limited knowledge learned by the network help UCT? # Improving on the Generalized Policy #### Coverage over 30 runs for a subset of problems | Planner/Prob. | p02 | p04 | p06 | p08 | | |---------------------------------|-------|-------|-------|-------|--| | ASNets | 10/30 | 0/30 | 19/30 | 0/30 | | | UCT* | 9/30 | 11/30 | 28/30 | 5/30 | | | Ranked ASNets (<i>M</i> = 10) | 6/30 | 10/30 | 25/30 | 4/30 | | | Ranked ASNets (<i>M</i> = 50) | 10/30 | 15/30 | 27/30 | 10/30 | | | Ranked ASNets (<i>M</i> = 100) | · | | 29/30 | 4/30 | | For results for full set of problems, please see our paper. # **Combating an Adversarial Training Set** #### **Objectives:** - Learn what we have not learned - Robust to changes in the environment or domain TRAINING - Train network to unstack blocks - Test network to stack blocks - Worst-case scenario for inductive learners **TESTING** # **Combating an Adversarial Training Set** #### Coverage over 30 runs # **Exploiting the Generalized Policy** - CosaNostra Pizza new domain introduced by Toyer et al. (2018) - Probabilistically interesting (has dead ends) - Optimal policy: pay toll operator only on trip to customer - ASNets is able to learn the 'trick' to pay the toll operator only on the trip to the customer, and scales up to problems of any size - Challenging for SSP heuristics (determinization, delete relaxation) - Requires extremely long reasoning chains # **Exploiting the Generalized Policy** #### Coverage over 30 runs ### **Conclusion and Future Work** - Demonstrated how to leverage generalized policies in UCT - Simulation Function: Stochastic and Max ASNets - Action Selection: Simple and Ranked ASNets - Initial experimental results showing efficacy of approach - Future Work - 'Teach' UCT when to play actions/arms suggested by ASNets - Automatically adjust influence constant M, mix ASNet-based simulations with random simulations - Interleave training of ASNets with execution of ASNets + UCT # Thanks! **Any Questions?** ### References - MCTS Diagram: Monte-Carlo tree search in backgammon on ResearchGate - CosaNostra Pizza Diagram: <u>ASNets presentation</u> on GitHub - ASNets and associated diagrams: Toyer, S.; Trevizan, F.; Thiebaux, S.; and Xie, L. 2018. <u>Action Schema Networks: Generalised Policies with Deep</u> <u>Learning</u>. In AAAI. - Trial Based Heuristic Tree Search: Keller, T., and Helmert, M. 2013. Trial-Based Heuristic Tree Search for Finite Horizon MDPs. In ICAPS. - Triangle Tireworld: Little, I., and Thiebaux, S. 2007. <u>Probabilistic Planning vs.</u> <u>Replanning</u>. In ICAPS Workshop on IPC: Past, Present and Future ### Stack Blocksworld - Additional Results ## **Exploding Blocksworld - Additional Results** | Planner/Prob. | p01 | p02 | p03 | p04 | p05 | p06 | p07 | p08 | |-------------------------|---------------------|----------------------|-----------------------|----------------------|-------------------|---------------------|---------------------|----------------------| | ASNets | 16/30 | 10/30 | 6/30 | | 30/30 | 19/30 | | | | | 8.0 ± 0.0 | 12.0 ± 0.0 | 10.0 ± 0.0 | - | 6.0 ± 0.0 | 12.0 ± 0.0 | - | - | | | 0.18 ± 0.14 s | $0.17 \pm 0.01s$ | 0.2 ± 0.04 s | | 0.19 ± 0.07 s | $0.42 \pm 0.12s$ | | | | UCT* | 26/30 | 9/30 | 13/30 | 11/30 | 30/30 | 28/30 | 30/30 | 5/30 | | | 10.92 ± 0.52 | 18.22 ± 1.62 | 25.23 ± 8.86 | 14.55 ± 0.63 | 6.13 ± 0.19 | 13.93 ± 0.8 | 13.0 ± 0.73 | 36.4 ± 5.09 | | | 102.51 ± 5.24 s | 175.01 ± 16.24 s | $222.27 \pm 88.77s$ | 136.46 ± 6.75 s | 36.51 ± 2.4 s | $132.36 \pm 8.11s$ | 107.11 ± 6.95 s | 335.87 ± 54.56 s | | Ranked ASNets $M = 10$ | 25/30 | 6/30 | 11/30 | 10/30 | 30/30 | 25/30 | 30/30 | 4/30 | | | 10.96 ± 0.48 | 17.0 ± 3.45 | 30.0 ± 13.64 | 14.4 ± 0.6 | 6.0 ± 0.0 | 13.6 ± 0.83 | 12.07 ± 0.14 | 35.0 ± 7.58 | | | 100.21 ± 6.01 s | 164.77 ± 34.89 s | 280.25 ± 135.07 s | 125.74 ± 11.93 s | $38.11 \pm 1.17s$ | $113.56 \pm 8.11s$ | $116.36 \pm 1.4s$ | $340.82 \pm 75.18s$ | | Ranked ASNets $M = 50$ | 23/30 | 10/30 | 14/30 | 15/30 | 30/30 | 27/30 | 30/30 | 10/30 | | | 11.04 ± 0.58 | 17.6 ± 2.85 | 35.71 ± 7.87 | 14.4 ± 0.46 | 6.0 ± 0.0 | 13.33 ± 0.76 | 12.07 ± 0.14 | 38.6 ± 0.97 | | | $94.17 \pm 6.51s$ | 166.29 ± 27.91 s | $352.14 \pm 78.66s$ | 123.06 ± 5.75 s | $38.85 \pm 1.15s$ | $127.69 \pm 7.59s$ | $102.57 \pm 1.38s$ | $374.93 \pm 12.01s$ | | Ranked ASNets $M = 100$ | 25/30 | 12/30 | 14/30 | 10/30 | 30/30 | 29/30 | 30/30 | 4/30 | | | 11.04 ± 0.48 | 17.33 ± 2.44 | 28.43 ± 6.54 | 14.6 ± 0.69 | 6.0 ± 0.0 | 13.38 ± 0.74 | 12.33 ± 0.28 | 36.5 ± 9.14 | | | 105.26 ± 4.83 s | 167.75 ± 24.5 s | 259.18 ± 65.16 s | 126.61 ± 6.41 s | $39.41 \pm 1.08s$ | 111.66 ± 7.15 s | $103.56 \pm 3.16s$ | $344.06 \pm 93.88s$ | 1st line is coverage, 2nd and 3rd lines of each cell show the mean cost and mean time to reach a goal, respectively, and their associated 95% confidence interval. #### CosaNostra Pizza - Additional Results ### **Triangle Tireworld** One-way roads, goal is navigate from start to the goal goal Black nodes indicate locations with a spare tyre 50% probability that you will get a flat tyre when you move from one location to another Optimal policy is to navigate along the edge of the triangle to avoid dead ends # **Triangle Tireworld - Results** Problem Size Problem Size - Neural Network Architecture inspired by CNNs - Action Schemas - Sparse Connections - "Action α affects proposition p", and vice-versa - Only connect action and proposition modules if they appear in the action schema of the module. - Weight sharing. In one layer, share weights between: - Action modules instantiated from the same action schema - Proposition modules that correspond to the same predicate Action modules for (unstack a b), (unstack c d), etc. share weights Proposition modules for (on a b), (on c d), (on d e), etc. share weights How to overcome fixed receptive field? Use search!