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Abstract

Planning is the essential ability of an intelligent agent to solve the problem of choosing
which action to take in an environment to achieve a certain goal. Planning is an
extremely important field within Artificial Intelligence that has countless real-world
applications, including robotics and operations research.

Monte-Carlo Tree Search (MCTS) is a state-space search algorithm for optimal
decision making that relies on performing Monte-Carlo simulations to incrementally
build a search tree, and estimate the values of each state. MCTS can often achieve
state-of-the-art performance when combined with domain-specific knowledge. How-
ever, without this knowledge, MCTS requires a large number of simulations in order
to obtain reliable estimates in the search tree.

The Action Schema Network (ASNets) [Toyer et al., 2018] is a very recent contri-
bution in planning that uses deep learning and neural networks to learn generalized
policies for planning problems. ASNets are well suited to problems where the “local
knowledge of the environment can help to avoid certain traps”. However, like most
machine learning algorithms, an ASNet may fail to generalize to problems that it was
not trained on. For example, this could be due to a poor choice of hyperparameters
that lead to an undertrained or overtrained network.

This research project is concerned with investigating how we can improve upon
the policy learned by an ASNet by combining it with MCTS. Our project has three
key contributions. The first contribution is an ingredient-based framework for MCTS
that allows us to specify different flavors of MCTS – including those which use the
policy learned by an ASNet. Our second contribution is two new methods which
allow us to use ASNets to perform simulations in MCTS, and hence directly affect
the estimated values of states in the search tree. Our third and final contribution is
two new methods for using ASNets in the selection phase of MCTS. This allows us to
bias the navigation of the search space towards what an ASNet believes is promising.

Our empirical evaluation demonstrates that by combining MCTS with ASNets, we
are able to ‘learn’ what the network did not learn during training, improve suboptimal
learning, and be robust to changes in the environment or the domain. We can more
reliably and effectively solve planning problems when combining MCTS with ASNets,
and hence we achieve the best of both worlds.
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Chapter 1

Introduction

Planning is the essential ability of an intelligent agent to solve the problem of choosing
which action to take in an environment to achieve a certain goal [Geffner and Bonet,
2013]. In simplified terms, an agent needs to select a sequence of actions that bring
us from the initial state to the goal state, ideally with the smallest cost possible.

Our research is concerned with combining the advantages of forward-chaining
state space search through Monte-Carlo Tree Search (MCTS), with the domain-specific
knowledge learned by Action Schema Networks (ASNets), a domain-independent
learning algorithm. By combining MCTS and ASNets, we hope to more reliably and
effectively solve planning problems, and hence achieve the best of both worlds.

1.1 Planning

We consider both classical and probabilistic planning problems. In classical planning
problems, taking an action in a certain state can only lead to one outcome. On the
other hand, in probabilistic planning problems, taking an action in a certain state
can lead to one of many outcomes, each with a certain probability. The solution to a
planning problem is a policy π, which tells us which action to take in a certain state.
The optimal policy π∗, will take us to a goal state with the smallest possible cost.

Planning is an extremely important field within Artificial Intelligence that has
countless real-world applications. For example, consider NASA’s Mars Exploration
Rovers (MERs) [Estlin et al., 2007]. Sending a radio signal to Mars takes approximately
14 minutes, so manually issuing commands to a rover and waiting for feedback is
unfeasible. Thus, it is important for MERs to have some autonomous planning and
scheduling capabilities, in order to navigate the Martian terrain and conduct scientific
experiments.

1.2 Action Schema Networks

The Action Schema Network (ASNets) is a very recent contribution [Toyer et al., 2018]
in planning that uses deep learning and neural networks to learn generalized policies
for planning problems. A generalized policy is a policy that can be applied to any
problem from a given planning domain. Ideally, this generalized policy is able to
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2 Introduction

reliably solve all problems in the given domain with a low cost, although this is not
always feasible.

ASNets are well suited to problems where “local knowledge of the environment
can help to avoid certain traps” [Toyer et al., 2018]. In such problems, an ASNet
can significantly outperform traditional planners that use heuristic state space search.
Moreover, a significant advantage of ASNets is that a network can be trained on a
limited number of small problems, and generalize to problems of any size.

However, we cannot guarantee that an ASNet is always able reliably solve a plan-
ning problem. For example, an ASNet could fail to generalize to difficult problems
that it was not trained on – an issue often encountered with machine learning algo-
rithms. Moreover, the policy learned by an ASNet could be suboptimal, due to a poor
choice of hyperparameters that has lead to an undertrained or overtrained network.

1.3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a state-space search algorithm for optimal deci-
sion making. MCTS relies on performing Monte-Carlo simulations to build a search
tree and estimate the values of each state [Browne et al., 2012]. As we perform more
and more of these simulations, the state estimates become more accurate. We discuss
the MCTS algorithm and its variants in more depth in Section 2.3.

MCTS-based game-playing algorithms have often achieved state-of-the-art perfor-
mance when paired with domain-specific knowledge. The most notable is AlphaGo
[Silver et al., 2016], which infamously defeated one of the world’s leading Go players
Lee Se-dol in early 2016. AlphaGo enhanced MCTS by using a learned policy network
as the rollout policy (which samples which actions to select) to perform simulations
instead of Monte-Carlo sampling, and a learned value network to evaluate and assign
value estimates to final states of simulations.

This is quite similar to what we want to achieve. Our ‘policy network‘ is the
generalized policy learned by an ASNet. We want to leverage this policy to encourage
MCTS to perform search around the state space and actions an ASNet believes are
promising.

However, it is important to note that ASNets is a domain-independent planning
algorithm that learns domain-specific knowledge. The policy and value networks of
AlphaGo have been trained specifically for learning how to play Go; hence AlphaGo
is not a domain-independent game-playing algorithm.

Limitations of MCTS

One significant limitation of vanilla MCTS is that we may require a large number of
simulations in order to obtain reliable estimates in the search tree. This means that it
can take a long time to make a good decision, time which we do not have.

Another disadvantage of MCTS is that because simulations are random, the search
may not be able to sense certain branches of the tree that will eventually lead to sub-
optimal outcomes, due to the random nature of how the state space is explored.
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1.4 Contributions and Research Goals

The main goal of this research project is to investigate how we can improve upon
the generalized policy of an ASNet by combining it with MCTS. As each has its own
weaknesses, we hope that by combining both we will get the best of both worlds, and
achieve more reliable results. The key contributions of this project are:

1. An Ingredient-Based Framework for MCTS. We introduce a framework for
planning problems, extended from Trial-based Heuristic Tree Search (THTS)
[Keller and Helmert, 2013], in which we can generate different flavors of MCTS
by specifying a selection of ingredients. THTS is designed for solving finite
horizon MDPs, while our framework solves Stochastic Shortest Path problems
(SSPs) with dead ends - i.e. problems which have an indefinite horizon.

2. Using ASNets as the rollout policy in MCTS. We present two new rollout
policies: Stochastic ASNets and Maximum ASNets. We can use these to perform
simulations and improve the estimates of how promising states and actions are
within the search tree. These estimated values are then used to guide the
navigation of the state space.

3. Using ASNets in the selection phase of MCTS. We introduce two techniques,
Simple-ASNet and Ranked-ASNet, that can be used to bias the selection of
nodes within the explicit search tree towards those that an ASNet believes
are promising. We demonstrate that these techniques are relatively robust to
any misleading information provided by an ASNet, as they decay a network’s
influence as we apply what it has suggested more frequently.

It is worth noting that although we test our proposed methods using the gener-
alized policies learned by an ASNet, our methods are applicable to any method of
acquiring a generalized policy, including ROLLER [de la Rosa et al., 2011] and [Yoon
et al., 2002].

1.5 Report Outline

The rest of the report follows the following structure:

• Chapter 2 - Background and Related Work. In this chapter, we will formal-
ize planning as solving a Stochastic Shortest Path problem (SSP), and discuss
existing algorithms used to solve planning including Monte-Carlo Tree Search
(MCTS) and Upper Confidence Bounds applied to Trees (UCT). We will also
describe Action Schema Networks (ASNets), a deep learning approach to plan-
ning using neural networks, which forms the basis of our research project.
Finally, we give a brief discussion of related work that combines MCTS with
domain-specific knowledge.
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• Chapter 3 - Combining Search with Action Schema Networks. The main
objective of this chapter is to build up a ingredient-based framework for UCT,
and then discuss how we can include the knowledge that has been learned by
an ASNet into the tree search. We will also outline the goals we hope to achieve
by combining ASNets with search.

• Chapter 4 - Empirical Evaluation. We will firstly describe the configurations of
UCT and ASNets we use, and then introduce the problems and domains that
we evaluate our algorithms on. Next, we present the results of our experiments
and discuss our findings in detail. We discover that UCT is able to account for
the suboptimal learning of an ASNet. Moreover, an ASNet is able to improve
plain UCT by biasing it to navigate promising parts of the search space.

• Chapter 5 - Conclusion. In the final chapter, we conclude the report by summa-
rizing our contributions and discuss how we can further combine search with
ASNets in future work.



Chapter 2

Background and Related Work

In this chapter, we firstly give a basic overview of planning (Section 2.1) in which we
discuss the representation of planning problems, planning heuristics, and common
algorithms used to solve planning problems. In Section 2.3, we will discuss Monte-
Carlo Tree Search (MCTS), and variants of MCTS that have been adapted for planning.

In Section 2.4, we give a brief discussion of Action Schema Networks (ASNets)
and its advantages and disadvantages over traditional planning algorithms based on
heuristic search. Finally, we will consider related work that combines heuristic state
space search with a generalized policy.

2.1 Planning

As we briefly mentioned in Section 1.1, outcomes of applying an action in a state are
deterministic in classical planning, and stochastic in probabilistic planning. In this
section, we will firstly discuss how we can model classical and probabilistic planning
problems as Stochastic Shortest Path problems (SSPs) [Bertsekas and Tsitsiklis, 1991].
Finally, we briefly discuss popular heuristic search planning algorithms, and domain-
independent planning heuristics.

2.1.1 Stochastic Shortest Path Problems

An SSP is a tuple 〈S, s0, G, A, P, C〉 [Trevizan, 2013] where:

• S is the finite set of states

• s0 ∈ S is the initial state

• G ⊆ S is the finite set of goal states

• A is the finite set of actions

• P : S × A × S → [0, 1] is the transition function. P(s′ | a, s) represents the
probability that we will transition to s′ ∈ S after applying action a ∈ A in state
s ∈ S.

• C : S× A → (0, ∞) is the cost function. C(s, a) is the immediate cost incurred
when applying action a ∈ A in state s ∈ S.

5



6 Background and Related Work

An agent’s objective in an SSP is to perform a sequence of actions to move from
the initial state s0, to a goal state sg ∈ G, with the lowest expected cost possible. At
each step of the planning execution, an agent in state s ∈ S executes an action a ∈ A,
pays a cost of C(s, a), and then transitions to the next state s′ with a probability of
P(s′ | a, s). For classical planning problems, P(s′ | a, s) ∈ {0, 1}.

A solution to an SSP is a policy π : A× S → [0, 1], where π(a | s) represents the
probability action a ∈ A will be applied in state s ∈ S. Using this policy, we can
define the state-value function Vπ : S → [0, ∞) (Equation 2.1) and the action-value
function Qπ : S× A→ [0, ∞) (Equation 2.2).

Vπ(s) =

{
0 if s ∈ G

∑a∈A π(a | s) ·Qπ(s, a) otherwise
(2.1)

Qπ(s, a) = C(s, a) + ∑
s′∈S

P(s′ | a, s) ·Vπ(s′) (2.2)

Intuitively, Vπ(s) represents the expected cost to reach a goal state from state
s ∈ S under policy π. Qπ(s, a) represents the expected cost to reach a goal state if we
apply action a ∈ A in state s ∈ S and follow π thereafter.

An optimal policy π∗, is the policy that selects actions which minimize the ex-
pected cost of reaching a goal. For SSPs, there always exists an optimal policy that
is deterministic (i.e. π∗ : S → A). This deterministic optimal policy can be obtained
by finding the fixed-point of the state-value function V∗ (Equation 2.3) known as the
Bellman optimality equation [Bellman, 1954], and the action-value function as Q∗

(Equation 2.4).

V∗(s) =

{
0 if s ∈ G
mina∈A Q∗(s, a) otherwise

(2.3)

Q∗(s, a) = C(s, a) + ∑
s′∈S

P(s′ | a, s) ·V∗(s′) (2.4)

SSPs with Dead Ends

In many of the planning problems we consider, there are dead ends. A dead end
represents any part of the state space in which there is no path to the goal.

A planning problem has an unavoidable dead end if the probability of reaching
the goal is always less than 1 [Little and Thiébaux, 2007]. The representation of an
SSP we presented above assumes that all dead ends are avoidable. One way we can
handle dead ends in an SSP is by introducing a fixed dead-end penalty D ∈ (0, ∞),
and a give-up action [Kolobov et al., 2012].

This dead-end penalty represents the punishment incurred when we reach a state
that is a dead end, and also acts as a limit to bound the maximum expected cost to
reach a goal as D. Thus, if we cannot find a path to the goal with an expected cost
less than D, then we can choose the give-up action and give up.
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We may formally represent the new state-value function Vπ using Equation 2.5.
The action-value function Qπ remains unchanged from Equation 2.2.

Vπ(s) =


0 if s ∈ G
D if s is a dead end

min{D, ∑a∈A π(a | s) ·Qπ(s, a)} otherwise

(2.5)

2.1.2 Planning Example: Blocksworld

In planning, we generally split the description of a problem into a general domain
and a concrete problem. The domain specifies the possible actions, and a problem
specifies the initial state and the goal state. This is described in further detail in
Section 2.4.1.

The Blocksworld domain is an example of an SSP in which the goal is to stack
blocks on the table in a certain configuration using a robotic arm (see Figure 2.1).

There are only four possible actions in the original Blocksworld domain; all lead
to deterministic outcomes.

1. unstack(x, y) - pick up block x from block y

2. stack(x, y) - stack block x on block y

3. pick-up(x) - pick block x up from the table

4. put-down(x) - put block x down on the table

c

d

e

a

b a b

c

d

e

Initial State Goal State

1. unstack(a, b)     2. put-down(a)     3. unstack(c, d)     4. stack(c, b)
 

5. unstack(d, e)     6. stack(d, c)        7. pick-up(e)          8. stack(e, a)

Figure 2.1: Example of a Blocksworld problem with its optimal plan

Figure 2.1 depicts an example of a concrete Blocksworld problem. The optimal
plan for this problem requires us to execute eight actions. We choose Blocksworld as
a running example because it is a simple and easily understood problem.
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2.2 Planning as Heuristic Search

The majority of state-of-the-art probabilistic planning algorithms, such as LRTDP
[Bonet and Geffner, 2003] and Anytime AO* [Bonet and Geffner, 2012], rely on
heuristic search. Heuristic search planners construct a graph of state transitions, and
choose the direction of the graph expansion by using a heuristic [Toyer, 2017].

2.2.1 Heuristics

A heuristic h : S → R, gives an estimate of the cost to reach the goal from a given
state. By using a heuristic, heuristic search planners focus their search on promising
parts of the state space.

A heuristic is said to be admissible if it always underestimates the true cost to
reach the goal from a given state - i.e. h(s) ≤ V∗(s). The majority of heuristic search
algorithms are only guaranteed to converge to the optimal solution if an admissible
heuristic is used. However, admissible heuristics are often less informative than
inadmissible ones [Haslum and Geffner, 2000]. Thus, heuristic search algorithms
may converge to a solution (not necessarily optimal) much faster when using an
inadmissible heuristic.

Most heuristics are derived through relaxing assumptions of the problem, so it is
easier to solve. For example, consider the problem of navigating through the maze
depicted in Figure 2.2, where the goal is to collect the seed in the bottom left-hand
corner. One admissible heuristic we could use is the Manhattan distance, which
calculates the distance between two points by summing the absolute differences of
their Cartesian coordinates. The Manhattan distance relaxes the problem by assuming
there are no obstacles in the maze, and thus underestimates the true cost of reaching
a goal.

Figure 2.2: The Pacman Maze, from UC Berkeley’s CS188 course page

http://ai.berkeley.edu/search.html
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In our research project, we will consider three domain-independent heuristics:
hadd (inadmissible), hmax (admissible) [Haslum and Geffner, 2000], and the Landmark
Cut heuristic (admissible) [Helmert and Domshlak, 2009]. All of these heuristics are
calculated through delete relaxation, where, once a proposition is true, it is always
true. The Landmark Cut (LM-Cut) heuristic is computed by summing the minimal
cost of each set of action landmarks. This calculation requires computing the hmax

heuristic for a series of relaxations of the original problem (one per set of action
landmark). Thus, it can be considerably more expensive to compute than hmax, but
generally gives much better estimates.

One potential disadvantage of these heuristics is that they were designed for
deterministic planning problems. Despite the fact that we can relax a probabilistic
problem into a deterministic one through determinisation, the calculation of the
heuristics will ignore the true probabilities of outcomes, and will instead assume any
outcome can be made true with a probability of 1 [Jimenez et al., 2006]. This can lead
to very uninformative heuristic estimates, particularly for problems with many dead
ends (e.g. Triangle Tireworld in Little and Thiébaux [2007]).

2.3 Monte-Carlo Tree Search

As we discussed in Section 1.3, Monte-Carlo Tree Search (MCTS) is a very simple
state-space search algorithm that builds the search tree in an incremental manner by
performing Monte-Carlo simulations.

The original version of MCTS approximates the true values of states and actions
by performing a large number of random simulations. It then uses these estimated
values to guide the navigation of the state space.

2.3.1 MCTS Algorithm

At each decision step, the MCTS algorithm incrementally builds the search tree by
performing trials (also known as search iterations) until we reach some computational
budget (e.g. time, memory) [Browne et al., 2012]. Each node in the search tree
represents a state, and the edges between nodes represent actions.

Once the computational budget is reached, MCTS will return the action that gave
the best estimated value. MCTS is an example of an anytime optimal algorithm
[Dean and Boddy, 1988]. An anytime algorithm can return a non-random action even
if it is interrupted. An anytime optimal algorithm will eventually return the optimal
action given enough time.

In each trial, MCTS follows four phases (as depicted in Figure 2.3):

1. Selection - MCTS recursively selects nodes in the tree using a child selection
policy until a leaf node in the explicit tree is encountered.

2. Expansion - one or more child nodes of the leaf node are created in the explicit
search tree according to the available actions.
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3. Simulation - a simulation of the game or scenario is run from one of the new
child nodes to completion.

4. Backpropagation - the result of this simulation is backpropagated through
the selected nodes in the tree to update their estimated values. The updated
estimates affect the child selection policy in future trials.

Figure 2.3: Phases of MCTS [Chaslot et al., 2008]

One major problem in MCTS is how we should choose the child selection policy
such that it balances the trade-off between exploration and exploitation. That is, the
exploitation of nodes it believes have optimal state estimates, and the exploration of
nodes that currently have sub-optimal state estimates, but may turn out to be superior
in the long term [Browne et al., 2012].

It must be noted that the full benefits of MCTS are not realized unless we adapt
the basic algorithm for the problems we are tackling (planning in our case) [Domshlak
and Feldman, 2013]. Thus, we will discuss MCTS-based algorithms for planning in
Sections 2.3.3 and 2.3.4.

2.3.2 Upper Confidence Bounds applied to Trees

Upper Confidence Bounds applied to Trees (UCT) [Kocsis and Szepesvári, 2006] is a
variation of MCTS that addresses the trade-off between exploration and exploitation
in the selection phase by using the Upper Confidence Bound 1 term (UCB1).

UCT treats the choice of a child node as a multi-armed bandit problem, in which
we must allocate our computational budget between the child nodes to minimize our
expected cost (in the context of SSPs).

In UCT, the child node c of a parent node p that maximizes the UCB1 term
(Equation 2.6) is selected:
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UCB(p, c) = B ·

√
log np

nc︸ ︷︷ ︸
exploration

− V(c)︸︷︷︸
exploitation

(2.6)

Where np represents the number of times the parent p has been visited, nc rep-
resents the number of times the child c has been visited, and V(c) represents the
current state-value estimate for the child c. B is the bias term which allows to scale
the trade-off between exploration and exploitation. B is commonly set to

√
2.

We can see that if a child node is visited, the contribution of the exploration term
will decrease as both np and nc increase by 1. However, if a different child node c′ 6= c
is visited, then np increases by 1 and the exploration term increases for c. Thus, it is
clear how UCT can balance the trade-off between exploration and exploitation.

Kocsis and Szepesvári [2006] proved that UCT will converge to the optimal policy
given an infinite number of simulations. We will give a further description and
analysis of the UCB1 term in Section 3.5.

Problems with Vanilla MCTS and UCT

Vanilla MCTS and UCT are domain-independent search algorithms that rely on per-
forming a large number of random simulations in order to get good estimates of
states and actions.

However, in planning we have domain-independent heuristics that estimate the
cost of reaching a goal. These heuristics would give us much faster and hopefully
more accurate estimates compared to those calculated by performing a large number
of simulations. By using these heuristics in MCTS or UCT, we can more efficiently
guide the search to more promising parts of the search space and perform more trials
with the limited computational budget we are given.

Another problem with vanilla MCTS and UCT is that they do not consider the
true transition probabilities P : S × A × S → [0, 1] provided by an SSP when back-
propagating information up the search tree. Instead, they estimate these probabilities
from performing a large number of simulations. We will discuss this issue in much
more detail in Section 3.3.2.

2.3.3 PROST

PROST is a domain-independent probabilistic planning algorithm based on UCT
[Keller and Eyerich, 2012]. PROST introduces many improvements to UCT that have
been tailored for probabilistic planning including Q-value initialization, search depth
limitation, and the removal of superfluous actions.

It should be noted that PROST is used to solve finite horizon MDPs. Thus, some
of the improvements such as reward locks as discussed by Keller and Eyerich, are not
directly applicable to SSPs.

To represent search nodes, PROST adopts decision nodes to represent a state,
and chance nodes to represent a state and an action. This allows us to support
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probabilistic planning problems where there may be many outcomes from applying
an action in a given state. We discuss this representation of search nodes in detail in
Section 3.2.1.

Q-Value Initialization

We have highlighted the fact that vanilla UCT must perform an extremely large
number of random simulations in order to converge to the optimal policy.

Q-value initialization helps us overcome the need for these simulations, as it
assigns quality estimates to the unvisited children (chance nodes) of a decision node
in the search tree [Keller and Eyerich, 2012]. By assigning these estimates, we roughly
know which child chance node, and hence action is more promising in a given state.

PROST uses an iterative deepening search to estimate the Q-values, while we will
use the domain-independent planning heuristics we previously introduced in Section
2.2.1.

Thus, Q-value initialization can significantly assist PROST in the navigation of the
search tree, and will help it converge to the optimal policy much faster than vanilla
UCT.

Search Depth Limitation

In planning problems, immediate decisions at the top of the search tree have a much
larger influence on the expected cost of solving a problem than decisions in the
future [Keller and Eyerich, 2012]. This is especially the case for SSPs where taking an
inappropriate action could lead to a dead end with a very high probability.

On the other hand, this may not be the case in games such as Chess, where we
may have to plan ahead for a certain move in the future, and hence may need to
increase the search depth limit.

Thus, the search space near the root of the tree should be thoroughly explored for
probabilistic planning problems. We can do this by limiting the search depth, which
we will refer to as the trial length.

By limiting the trial length, we effectively do a limited lookahead search and as
a result, can perform a much larger number of trials in the limited computational
budget we are given. Ideally, this allows PROST to converge to the optimal policy in
a smaller number of trials.

2.3.4 Trial-based Heuristic Tree Search

Trial-based Heuristic Tree Search (THTS) is an ingredient-based algorithmic frame-
work that allows us to express MCTS, Dynamic Programming, and Heuristic Search
based planning algorithms [Keller and Helmert, 2013]. We are mainly concerned with
the MCTS and UCT algorithms that can be specified using THTS.

In a THTS algorithm, we must specify five ingredients: action selection, backup
function, heuristic function, outcome selection and the trial length. We discuss these
ingredients and a slightly modified version of the THTS algorithm in detail in Chapter
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3. Note that like PROST, THTS is also aimed at solving reward-based finite horizon
MDPs.

Using these ingredients, Keller and Helmert [2013] create three new algorithms,
all of which provide superior theoretical properties over UCT: MaxUCT, DP-UCT and
UCT*. MaxUCT combines Monte-Carlo backups with Full Bellman backups to build
estimates based on the best partial solution graph. DP-UCT uses the probabilities
provided by the transition function of the planning problem to directly backpropagate
estimates by performing Bellman backups. Finally, UCT* is an extension to DP-UCT
in which the trial length is set to 0, hence focusing the exploration of the state space
on states closer to the root of the search tree. The advantages of these algorithms
should become clearer after we discuss backup functions in Section 3.3.2.

Keller and Helmert found that UCT* outperformed both MaxUCT and DP-UCT
because of its stronger theoretical properties. We discovered through our experiments
that this was also the case for our planning problems.

2.4 Action Schema Networks

The Action Schema Network (ASNets) is a neural network architecture that exploits
deep learning techniques in order to learn generalized policies for probabilistic plan-
ning problems [Toyer et al., 2018]. Recall, generalized policies are policies that can be
applied to any problem in the given domain.

In this section, we will discuss of the intuition behind an ASNet, its architecture,
and how a network is trained. We limit our discussion to be relatively brief, as the
main goal of this research project is to use an existing policy learned by an ASNet.

2.4.1 Intuition and Architecture

What is an Action Schema?

In the Probabilistic Planning Domain Definition Language (PPDDL), which is com-
monly used to specify probabilistic planning problems, we must split the description
of a problem into a general domain and a concrete problem [Younes and Littman,
2004]. The domain description can be considered a general template that allows
us to describe concrete problems. In this domain description, we must specify the
predicates, the action schemas, and the cost function [Toyer et al., 2018].

An action schema allows us to represent an action through the preconditions that
must be satisfied before it can be executed, and the (probabilistic) effects of the action
once it is executed. [Russell and Norvig, 2009]. An example of an action schema for
the unstack action in Blocksworld is shown below.

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and
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(holding ?x) (not (handempty))
(clear ?y) (not (clear ?x))
(not (on ?x ?y)))))

% Taken from the benchmarks provided by pyperplan

In the context of classical and probabilistic planning, predicates are boolean-
valued functions that tell us whether certain statements are true. In the Blocksworld
action schema given above, (on ?x ?y) and (holding ?x) are examples of predi-
cates that tell us whether block x is on block y, and if the robotic arm is holding block
x respectively.

When specifying a concrete problem in PPDDL, we list the objects in the problem,
and the propositions (grounded predicates) that must hold in the initial state and in
the goal state. Since we have propositions in a concrete problem, we can ground an
action schema to get all the possible ground actions in the planning problem.

Network Structure

An ASNet consists of alternating action layers and proposition layers (Figure 2.4).
The first and last layer of an ASNet are always action layers.

An action layer is composed of a single action module for each ground action.
Similarly, a proposition layer is composed of a single proposition module for each
ground proposition [Toyer et al., 2018]. An action module in one layer is connected
to a proposition module in the next layer only if the ground proposition is directly
related to the action. That is, if the ground proposition appears in the preconditions
or effects of a ground action. Similarly, a proposition module in one layer is connected
to an action module in the next layer only if the ground proposition appears in the
preconditions or effects of the relevant ground action.

These sparse connections between the modules in the layers ensure that only the
relevant action modules are connected to a proposition module, and vice-versa. This
is vital for the weight sharing scheme, which we describe below. As such, we can see
how ASNets can exploit the relational structure of planning problems.

Note, that the input to the first layer of an ASNet is a binary vector representing
the truth-value of all propositions, while the output of each action module in the final
layer represent the policy π(a | s).

Action
layer 1

πθ(a | s)
Input
features

Proposition
layer 1

Action
layer 2

Figure 2.4: ASNet with 1 hidden layer [Toyer et al., 2018]
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Weight Sharing

One major advantage of an ASNet is its weight sharing scheme, which "allows a
network to be applied to any problem in a given planning domain" [Toyer et al.,
2018].

Since all ground actions instantiated from the same action schema will have the
same ‘structure’, we can use this structure to share the same set of weights between
their corresponding action modules in a single action layer. Similarly, weights are
shared between proposition modules in a single proposition layer that correspond to
the same predicate. It is easy to see that by learning a set of common weights for
each action schema and predicate, we can scale an ASNet to a problem of any size.

The weight sharing and network structure allow ASNets to achieve state-of-the-
art performance on several planning problems, as it can learn knowledge of the
environment from very small problems, and scale this knowledge up to problems of
any size.

2.4.2 Heuristic Feature for Expressiveness

Since the action modules and proposition modules in an ASNet are sparsely con-
nected, one limitation of an ASNet is its limited receptive field which may cause it to
behave analogously to lookahead search. That is, an ASNet is unable to support long
chains of reasoning.

One way Toyer et al. has suggested to overcome this problem is to supply the
network with additional features obtained from a domain-independent planning
heuristic such as LM-Cut (see Section 2.2.1). This allows an ASNet to ‘see’ beyond its
fixed receptive field.

2.4.3 Training an ASNet

The weights θ of an ASNet are learned through a sophisticated training algorithm that
alternates between guided exploration and supervised learning [Toyer et al., 2018].

In the guided exploration stage, we firstly sample trajectories from the policy πθ

an ASNet has learned so far, and from the policy envelopes for the optimal policy
π∗, which has been calculated by a teacher such as LRTDP. We then store the states
encountered along these trajectories in a state memory.

Next, in the supervised learning stage, we sample selections of states from the
state memory into several mini-batches, and optimize the cross-entropy loss using
the Adam optimizer, which updates θ in the direction that decreases the loss.

We continue training the network by alternating between the guided exploration
and supervised learning stages until we have reached a pre-defined maximum num-
ber of iterations (epochs), a time limit, or have satisfied a performance-based early-
stopping condition (e.g. 100% success rate of reaching the goal for a fixed number of
iterations).
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2.4.4 Pros and Cons of ASNets

One major advantage of ASNets is that it learns a generalized policy. Due to the
weight sharing scheme, the set of weights θ learned by an ASNet can be applied to
any problem from the domain the network was trained on. That is, even though a
new network needs to be instantiated for each new problem, this network uses the
learned weights θ

This means that an ASNet can be trained on a small number of problems, and
evaluated on any number of different problems without the requirement to retrain
the network. This is in comparison to traditional planning algorithms which must
solve each problem separately.

As we have previously discussed in Section 1.2, ASNets are well-suited to prob-
lems where learning some knowledge of the local environment can help us avoid
common traps. As such, we can train an ASNet to learn ‘tricks’ from problems with
a small number of objects, and generalize and apply these ‘tricks’ to problems with
any number of objects. An example of such a domain is Triangle Tireworld [Little
and Thiébaux, 2007], which we discuss in Section 4.2.4.

However, like most machine learning algorithms, an ASNet could fail to generalize
to new problems it was not trained on. Perhaps this could be because each problem
has its own ‘trick’. If this were the case, then an ASNet would not be able to model
all of these ‘tricks’ due to its limited modelling capacity.

We could increase the number of hidden layers and units to remedy this problem,
but finding a good choice of these hyperparameters is very difficult. Moreover, a poor
choice of hyperparameters can lead to a sub-optimally trained network, or a network
that has overfitted to the problems that it was trained on.

2.5 Related Work

Heuristic search algorithms are a well understood and researched field for solving
planning problems. State-of-the-art probabilistic planning algorithms include Labeled
Real Time Dynamic Programming (LRTDP) [Geffner and Bonet, 2013], Anytime AO*
[Bonet and Geffner, 2012] and variants of UCT [Keller and Eyerich, 2012].

On the other hand, deep learning is still a very new technique for solving plan-
ning problems. Nevertheless, Groshev et al. [2018] use convolutional neural networks
to learn generalized reactive policies for classical planning problems by representing
them as images. However, this requires hand-engineered mappings from the descrip-
tion of the problem (usually in PDDL [Ghallab et al., 1998], the original deterministic
version of PPDDL) to an image. Thus, their deep neural network planning pipeline
is domain-dependent, unlike ASNets.

As far as we are aware, combining UCT with a generalized policy has not been
done before. Moreover, our framework for combining UCT with ASNets is domain-
independent. This represents a significant advantage because there is no need to
hand-engineer features for each planning domain.
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It is also important to note that our contributions are not limited to MCTS and
UCT. Our contributions can be used in many other search algorithms. For example,
we could use ASNets as a simulation function (described in Section 3.4) to guide
the trajectories selected in LRTDP. Moreover, if a better algorithm for learning a
generalized policy is invented, our contributions are still applicable as they are not
coupled tightly to ASNets.

2.6 Summary

In this chapter, we firstly introduced classical and probabilistic planning as the prob-
lem of solving an SSP. We then gave a brief discussion of planning as heuristic search
and described domain-independent planning heuristics.

In Section 2.2, we analyzed MCTS in detail and introduced UCT, which uses the
UCB1 term to balance the trade-off between exploration and exploitation. We then
discussed UCT in the context of planning, and described PROST and THTS.

Finally, we introduced ASNets and how its neural network architecture exploits
the relational structure of planning problems. Moreover, we introduced the procedure
used to train an ASNet, and discussed the advantages and disadvantages of ASNets.
We finished this chapter by briefly exploring related work in the field of heuristic
search and deep learning for planning.

In the next chapter, we will introduce our framework for combining UCT with
ASNets.
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Chapter 3

Combining Search with Action
Schema Networks

ASNets are “well-suited to problems where the local knowledge of the environment
can help avoid common traps” [Toyer et al., 2018]. That is, ASNets are effective
when there is some trick that allows us to easily solve the problem and avoid any
common traps. However, it is much more difficult for ASNets to generalize to solving
problems that may not contain a certain trick, or may contain too many tricks (e.g.
each problem in the training set has its own trick). Moreover, ASNets are not robust
to changes in the domain. For example, an ASNet does not take the probability of
non-deterministic actions into account after it has been trained, so the learned policy
will not change if the probabilities within a domain are later altered.

In Section 2.3, we introduced Monte-Carlo Tree Search and UCT as domain-
independent search algorithms for solving planning problems. A major disadvantage
of vanilla MCTS-based search algorithms is that they do not employ any planning
specific knowledge, such as using a heuristic, h : S→ R, for calculating a state-value
estimate, V(s). Instead, vanilla MCTS-based searched algorithms rely on a large
number of simulations (rollouts) to estimate this state-value. Of course, this can lead
to increased search times, and an increased number of rollouts required for MCTS to
find a solution, especially if random simulations are used.

PROST [Keller and Eyerich, 2012] and THTS [Keller and Helmert, 2013] attempt
to circumvent these issues by using the Q-value initialization of unvisited search
nodes. By doing so, they remove the strict requirement of doing simulations, as these
Q-value estimates essentially tell us which action is more suitable, and hence should
be considered at each decision point.

We develop a ingredient-based UCT framework, similar to THTS, that allows
us to exploit the learned policy of an ASNet. By using the local knowledge of the
environment, we hope to more efficiently navigate the state-space of the problem
during search by biasing the simulations and action selection of UCT. Moreover, we
hope to overcome the limitations of ASNets, as we will further discuss in Section 3.1.

We should keep in mind that ASNets is a domain independent planning algorithm
despite the fact that an ASNet learns local knowledge of the environment. Thus, our
pipeline of combining UCT with ASNets is also domain independent.

19
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3.1 Goals

With the potential issues of plain UCT and ASNets in mind, we aim to achieve the
following goals in combining UCT with ASNets.

3.1.1 Learn what we have not learned

As encountered in many machine learning algorithms, the capability of an ASNet to
generalize beyond the distribution of problems it has encountered during training
time can be very limited. An ASNet trained on a very specific problem within a
domain could fail to generalize to new problems with slight modifications.

As a concrete example, consider Blocksworld ( Section 2.1.2) and the task of stack-
ing n blocks initially all on the table into a single tower, and the reverse (unstacking)
as shown in Figure 3.1. We could train an ASNet to solve the relatively trivial task
of unstacking the tower of n blocks and placing each block on the table. However,
this ASNet would fail completely when evaluated on stacking the n blocks into a
single tower, as it has never encountered the idea of stacking blocks on top of each
other, only unstacking. In this scenario, the problems in the training set are clearly
not representative of the problems the network is being evaluated on.

1 2 ... n

n

...

2

1TESTING 
(Stacking)

TRAINING 
(Unstacking)

Figure 3.1: Stack and Unstack Blocksworld

We would expect an algorithm such as UCT to solve stacking blocks into a single
tower relatively easily, given a sufficient number of simulations. Thus, we are inter-
ested in how we can combine UCT with ASNets to overcome the problem-specific
bias ASNet has learned. Ideally, we hope UCT will be robust to any misleading
information an ASNet provides, but also exploit an ASNet if the learned policy is
informative.

3.1.2 Improve suboptimal learning

Neural networks can often be very difficult to train, especially due to the extremely
large number of parameters that must be learned and the hyperparameters that can
be tuned. A shallow ASNet with a limited number of hidden units could fail to
learn very specific details and ‘tricks’ for solving a problem due to its limited feature
representation.
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Moreover, the loss while training an ASNet could fail to converge to a minima
during training, due to the limited number of epochs, small learning rate, etc. In such
a scenario, the network would be undertrained and could fail to reliably solve both
the problems it was trained on and evaluated on.

On the other hand, we could overfit an ASNet on the training data we provide
it, and hence overtrain the network. As a result, this ASNet could fail to generalize
when evaluated on new, never-before-seen problems.

By combining UCT with what has already already been learned by an ASNet, we
can more efficiently guide the search to what ASNets believes are the promising parts
of the search space. Moreover, UCT should be relatively robust to any bad suggestions
that ASNets makes, given that UCT balances the trade-off between exploration and
exploitation.

3.1.3 Robust to changes in the environment or domain

We cannot always guarantee the problems that we evaluate on a trained ASNet are
similar, or originate from the exact same environment that the network was trained
on. Although an ASNet may have learned general information about a domain from
the problems it was trained on, we may not expect it to perform well on problems
from a slightly modified environment or domain.

Consider a dead-end version of the original Blocksworld domain, Exploding
Blocksworld, in which blocks or the table could be exploded with certain probabilities
when blocks are put down on top of them. A good policy to Exploding Blocksworld
avoids exploding important objects - i.e. the blocks that form the goal state or the
table. Exploding Blocksworld is discussed in detail in Section 4.2.2.

Consider an ASNet trained on Exploding Blocksworld, where the probability of
exploding the table or a block when putting down a block is 0.1. This network would
be more willing to take risks than an ASNet that has been trained with an exploding
probability of 0.5, as the probability of exploding the table or an important block and
entering a dead-end state and incurring the dead-end penalty is minimal. However, if
we evaluated this trained ASNet on an environment where the exploding probability
has been changed from 0.1 to 0.5, we would expect it to fail to reach a goal a majority
of times as the network is not reactive to the changed probability. Clearly, we would
expect the ASNet that was trained with an exploding probability of 0.5 to more
reliably solve problems with an exploding probability of 0.5.

By combining UCT with ASNets in such a scenario, we hope to use the general
information about the domain learnt by the ASNet to help guide the search and
avoid the problems discussed above. However, we should also take care to control
the influence of the network such that we do not just blindly follow what it has
suggested.
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3.2 General UCT Framework

We now describe an general ingredient-based framework in which we can combine
different ingredients to generate different flavors of UCT. This framework is very
similar to Trial-Based Heuristic Tree Search (THTS) [Keller and Helmert, 2013], apart
from some changes to support Stochastic Shortest Path problems (SSPs) instead of
finite horizon MDPs, and the introduction of dead-ends and the ‘simulation function’
to perform rollouts as described in vanilla MCTS. Note that our framework is focused
solely on specifying UCT-based search algorithms.

Using our framework, we can specify the DP-UCT, Min-UCT and UCT* algorithms
seen in THTS, as well as new flavours of UCT that make use of the learned policy of
an ASNet. We describe the algorithms we can specify using our UCT framework in
depth in Section 3.7.

3.2.1 Representation of Search Nodes

We adopt the same representation of alternating decision nodes and chance nodes in
our search tree as used commonly in decision trees, and as seen in PROST and THTS.

A decision node nd is a tuple 〈s, Nk, Vk, {n1, ... nm}〉, where s ∈ S is the state,
Nk ∈ Z+ is the number of visits to the node in the first k trials, Vk ∈ R is the state-
value estimate based on the first k trials, and {n1, ... nm} are the successor nodes (i.e.
children) of nd.

A chance node nc is a tuple 〈s, a, Nk, Qk, {n1, ... nm}〉. The only changes compared
to a decision node are the a ∈ A, representing the action this chance node corresponds
to, and Qk, the action-value estimate based on the first k trials.

Assume, that we are able to access the value of attributes within tuples through
their name - e.g. s(n) represents the state of a node n, Vk(nd) represents the state-
value estimate of a decision node nd, a(nc) represents the action of a chance node
nc.

Let S(n) represent the successor nodes {n1, ... nm} of a search node n. Note
that a node must be expanded for its successor nodes S(n) to be initialized in the
search tree. Clearly, it must be true that for every chance node nc, ∑nd∈S(nc) P(s(nd) |
a(nc), s(nc)) = 1.

Initially, our search tree contains a single decision node nd with s(nd) = s0, rep-
resenting the initial state of our problem. At each step of the planning execution
process, the root node represents the current state of the planning problem.

Thus, a decision node nd represents a state in which we must make a decision
by selecting an action among the successor chance nodes, S(nd). A chance node
nc represents a state and an action in which the successor decision nodes, S(nc),
represent the possible outcomes of applying the action a(nc) in the given state s(nc).
For a classical planning problem, where all outcomes are deterministic, there can
only be one child decision node for each chance node. In contrast, for a probabilistic
planning problem, there can be any number of child decision nodes for each chance
node.
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3.2.2 Algorithm

UCT is described as an online planning algorithm, as it interleaves planning with
execution. At each planning step, we give UCT a time constraint under which it
continuously performs trials. We also introduce another constraint, the maximum
number of trials per step, which takes priority over the time limit and allows UCT
to complete the planning execution sooner when we are following a direct path to
the goal. Once the time constraint or maximum number of trials per step is reached,
we select the chance node nc from the children of the root decision node that has the
highest action-value estimate, Qk(s, a), and apply its action a(nc).

We provide the pseudocode of the algorithm we now describe in Algorithms 1
and 2. A trial in our framework can we specified under four distinct phases of MCTS
(2.3.1): the Selection, Expansion, Simulation and Backup phase.

Selection Phase

As described in THTS, in the selection phase we traverse the explicit nodes in the
search tree by alternating between action selection for decision nodes, and outcome
selection for chance nodes until we reach an unexpanded decision node nd. nd is
called the tip node of the trial.

Expansion Phase

In the expansion phase, we expand nd and optionally initialize the Q-values of
the child chance nodes, S(nd). This Q-Value initialization is optional as it can
be computationally expensive. Calculating an estimated Q-Value requires calcu-
lating a weighted sum over the successor decision nodes for each chance node - i.e.
Qk(nc) = c(s(nc), a(nc)) + ∑nd∈S(nc) P(s(nd) | a(nc), s(nc)) ·V ′(s(nd)), where V ′(s) is
a state-value estimate for the state s. This state-value estimate could be taken from a
planning heuristic function, such as hadd.

In Q-value initialization for the children of a decision node nd, we calculate an
estimate Q(s(nc), a(nc)) for each child chance node nc and then back-propagate these
Q-values to the parent node nd. Next, we apply action selection to nd to select a chance
node nc, and sample an outcome using the outcome selection to get the new tip node
of the trial. We do this so we can immediately and effectively use the Q-values which
were expensive to compute.

Simulation Phase

Now, in contrast to THTS algorithms, which would then continuously switch back be-
tween the selection and expansion phase until the trial length is reached, we transition
to the simulation phase.

In the simulation phase, we perform a simulation (also known as playout and
rollout) of the planning problem from the state s(nd) until we reach a terminal or
dead-end state, or exceed the trial length. In vanilla MCTS algorithms, we do not
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initialize the explicit search nodes in the tree that correspond to a playout. However,
in our framework, we provide the option to create these explicit nodes. This allows
our framework to model the algorithms seen in THTS, where explicit search nodes are
created in its ‘simulation phase’ until the trial length is reached. However, creating
explicit nodes requires much more memory and is not beneficial for SSPs in most
situations as they are for finite horizon MDPs.

We use the simulation function to choose which action to take in a given state in
the simulation phase and sample the next state according to the transition function
P(· | a, s). If we have completed a simulation without reaching a goal or dead-end
state, we add a heuristic estimate h(s′) to the rollout cost using the heuristic function,
based on the final rollout state s′. If s′ is a dead-end, then we set the rollout cost to
be the dead end penalty D.

Following the steps above, if the trial length is set to 0, we do not perform any
simulations and simply take a heuristic estimate for the tip node of the trial, or D if
the tip node represents a dead-end.

Vanilla MCTS algorithms use a random simulation function, where each action has
the same probability of being selected. Several simulations from a state s, essentially
allow us to calculate a state-value estimate Vk(s). However, calculating an accurate
Vk(s) using random simulations requires an extremely large number of simulations,
so it is often more time-efficient to just assign a heuristic estimate h(s). It should
be noted that for some problems, such as CosaNostra Pizza as described in Section
4.2.3, the heuristic could be uninformative and hence misguide the search. In such a
scenario, random simulations could give a better estimate of Vk(s) than a heuristic h.

Backup Phase

After the simulation phase, we must propagate the information we have gained from
the current trial back up in the search tree. We use the backup function to update the
state-value estimate Vk(nd) for decision nodes and the action-value estimate Qk(nc)
for chance nodes. We do this by propagating the information we gained during
the simulation in reverse order through the nodes in the trial path, by continuously
applying the backup function for each node until we reach the root node of the
search tree.

Summary

We have shown a framework under which many configurations of UCT can be im-
plemented by specifying six key ingredients: action selection, outcome selection,
simulation function, heuristic function, trial length, and backup function. We discuss
these ingredients in depth in Section 3.3 and show the flavours of UCT that can be
specified using these ingredients in Section 3.7.
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3.2.3 UCT Framework Pseudocode

Algorithm 1 Performing trials and selecting action using UCT
1: procedure Select-Action(rootNode, timeLimit)
2: trialCount← 0
3: while ¬timeLimitReached(timeLimit) ∧ ¬maxTrialsReached(trialCount) do
4: Do-Trial(rootNode)
5: trialCount← trialCount + 1
6: bestChild← arg maxchild∈rootNode.children child.QValue
7: return bestChild.action . Return action of child with highest Q-value

8: procedure Do-Trial(rootNode)
9: selectedNode← rootNode

10: . 1. Selection phase
11: while selectedNode.isExpanded() do
12: if selectedNode is a DecisionNode then
13: selectedNode← Action-Selection(selectedNode)
14: else if selectedNode is a ChanceNode then
15: selectedNode← Outcome-Selection(selectedNode)
16:
17: . 2. Expansion phase
18: Expand-Node(selectedNode)
19: if initialiseQValues then
20: Initialize-Q-Values(selectedNode)
21: selectedNode← Action-Selection(selectedNode)
22: selectedNode← Outcome-Selection(selectedNode)
23: Expand-Node(selectedNode)
24: . Immediately select ‘best’ ChanceNode, sample outcome and expand.
25:
26: . 3. Simulation Phase
27: f utureCost = Simulate(selectedNode)
28:
29: . 4. Backup Phase
30: for node ∈ Reversed(trialPath) do
31: Backup-Function(node, f utureCost)

Pseudocode continued on next page.
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Algorithm 2 Performing trials and selecting action using UCT (continued)
32: procedure Initialize-Q-Values(parentNode)
33: for child ∈ parentNode.children do
34: Expand-Node(child) . Expand node to get successors
35: child.QValue← Q-Value(child.state, child.action)
36: Backup-Function(selectedNode) . Propagate Q-values to parent

37: procedure Simulate(rolloutNode)
38: rolloutState← rolloutNode.state
39: rolloutCost← 0
40: rolloutLength← 0
41: . Loop while trial length is not exceeded, and not in terminal/dead-end state
42: while ¬Simulation-Stop-Criterion(rolloutState, rolloutLength) do
43: action← Simulation-Function(rolloutState)
44: rolloutState, stepCost← Sample-Outcome(rolloutState, action)
45: rolloutCost← rolloutCost + stepCost
46: rolloutLength← rolloutLength + 1
47:
48: . Handle final rollout state
49: if Is-Goal(rolloutState) then
50: return rolloutCost
51: else if Is-Dead-End(rolloutState) then
52: return Dead-End-Penalty

53: else if Is-Terminal-State(rolloutState) then
54: . SSPs formally do not have terminal states, so this should never happen.
55: else
56: . Trial length exceeded, add heuristic estimate
57: return rolloutCost + Heuristic-Function(rolloutState)
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3.3 Ingredients

Now, we introduce and describe the selections for the ingredients required to spec-
ify common UCT flavors. We will discuss how to incorporate ASNets into these
ingredients later in Sections 3.4 and 3.5.

3.3.1 Action Selection

Vanilla UCT [Kocsis and Szepesvári, 2006] balances exploration between nodes that
have not been visited frequently, and exploitation of nodes that are known to be good
by choosing the action that maximizes the Upper Confidence Bound (UCB1) formula
during action selection (Equation 3.1). In the action selection step, UCT selects the
action of the child node of the decision node that maximizes the UCB1 term - i.e.
arg maxnc∈S(nd)UCB1(nd, nc).

UCB1(nd, nc) = B ·

√
log Ck(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

(3.1)

We set UCB1(nd, nc) = ∞ if Ck(nc) = 0 to force the exploration of chance nodes
that have not been visited before. We call B the bias term which can be adjusted to
adjust the trade-off between exploration and exploitation. Clearly, lower values of B
value exploitation. Conversely, higher values of B value exploitation.

UCB1 is a formula used to minimize regret in a multi-armed bandit problems
[Auer et al., 2002], and is said to implement optimism in the face of uncertainty. As
shown by the exploration component, the confidence bound grows logarithmically
with the total number of visits to a decision node, and shrinks with the number of
visits to a chance node (and hence the number of times the action a(nc) has been
tried). Thus, UCB1 is able to maintain a balance between exploration and exploitation.

One can also non-trivially prove that UCB1 never stops exploring [Kocsis and
Szepesvári, 2006]. Essentially, for a decision node nd, selecting a child chance node
nc with action a(nc) will decrease the exploration term for nc, but will increase the
exploration term for all other child chance nodes S(nd) \ nc [Gusmão and Raiko,
2012].

3.3.2 Backup Function

The backup function is used to propagate the information we gained during a trial
up the search tree by updating the state-value estimates Vk(nd) and the action-value
estimates Qk(nc). Here, we will outline the backup functions as discussed in THTS,
which can be used to specify multiple flavors of UCT.

In our discussion, we only consider partial backup functions. A partial backup
function on a chance node only requires one of its children to be explicated and visited
(hence implying there is a state-value estimate for that child) in the tree. On the other
hand, full backup functions require all children of a chance node to be explicated
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and visited. For us to consider full backup functions would require all children of
a chance node to be initialized with some heuristic estimate. This would require
state-value initialization for all decision nodes which would incur large computation
overheads.

Let D represent the fixed dead-end penalty. Recall, a dead end is any state from
which a goal state can no longer be reached. Let P(nd | nc) = P(s(nd) | a(nc), s(nc)),
representing the probability of transitioning to s(nd) from s(nc) after applying action
a(nc). Let c(nc) = c(s(nc), a(nc)), representing the cost of applying a(nc) in state
s(nd).

Monte-Carlo Backups

Monte-Carlo backups [Kocsis and Szepesvári, 2006] take a weighted average over the
state-values and action-values of the children of a search node, based on the number
of visits to a child node. Child nodes with a high number of visits are given more
weighting in this sum.

Thus, using Monte-Carlo backups to backup information at an end of a trial simply
extends the current average with the latest sampled value [Keller and Helmert, 2013].

Vk(nd) =


0 if s(nd) is a goal

D if s(nd) is a dead end

min
{

D,
∑nc∈S(nd)

Ck(nc)·Qk(nc)

Ck(nd)

}
otherwise

Qk(nc) = c(nc) +
∑nd∈S(nc) Ck(nd) ·Vk(nd)

Ck(nc)

(3.2)

A major disadvantage of using Monte-Carlo backups is that it does not consider
the provided probabilities of outcomes of a chance node P(· | a(nc), s(nc) that are
known a priori. Instead, Monte-Carlo backups try to ‘learn’ this probability, as
Ck(nd)/Ck(nc) → P(nd | nc) as k → ∞ [Keller and Helmert, 2013]. In most practical
situations, learning a good estimate of P(nd | nc) can take hundreds of thousands or
even millions of simulations. Moreover, since the state-value estimate for a decision
node nd is also calculated using a weighted average over all child nodes, an action
a(nc) in a chance node nc that leads to a very high cost (and hence should not be
chosen) can bias the updated Vk(nd) disproportionately if there has only been a small
number of simulations.

Consider a sub-tree of a search tree, as represented in Figure 3.2. Taking action
a1 leads directly to a goal while taking action a2 leads directly to a dead end with a
fixed dead-end penalty of D. Obviously, we would never choose a2 in such a scenario.
However, if both leaf decision nodes were visited only once, then Vk(nd) =

1·0+1·D
2 =

D
2 for the root decision node in the sub-tree, nd. Clearly, by using Monte-Carlo
backups, we can disproportionately bias action selection in future rollouts due to the
high perceived cost of nd.
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Given an action selection ingredient, such as UCB1, that never stops exploring,
we can prove that Monte-Carlo backups will eventually converge to the optimal state-

values and action-values, as limk→∞
Ck(n∗c )
Ck(nd)

→ 1 [Keller and Helmert, 2013], where n∗c
represents the chance node with the optimal action π∗(s). This proof, however, is not
trivial [Kocsis and Szepesvári, 2006].

D

0 D

a1 a2

0

1 1 

Figure 3.2: Subtree where Monte-Carlo Backups are not ideal

Minimum Monte-Carlo Backups

Minimum Monte-Carlo backups (called Maximum Monte-Carlo in Keller and Helmert
[2013] as they deal with rewards, not costs) solves the issue of disproportionately bi-
asing Vk(nd) that we encounter in plain Monte-Carlo backups by simply selecting
the action-value of the child chance node nc that gives the lowest action-value Qk(nc).
However, the probabilities of outcomes of a chance node are still being estimated
instead of using their known values in the backups. We can solve this issue using
Bellman Backups, which we describe next.

Vk(nd) =


0 if s(nd) is a goal

D if s(nd) is a dead end

min
{

D, minnc∈S(nd) Qk(nc)
}

otherwise

Qk(nc) = c(nc) +
∑nd∈S(nc) Ck(nd) ·Vk(nd)

Ck(nc)

(3.3)

Keller and Helmert [2013] have proven that Minimum Monte-Carlo backups will
converge to the optimal state-values and action-values, using the same reasoning as
for plain Monte-Carlo backups.

Bellman Backups

Bellman backups [Keller and Helmert, 2013] take probabilities of outcomes into con-
sideration when backing up action-value estimates. When updating the action-value
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estimate Qk(nc) for a chance node nc, a weighted sum is taken over the state-value
estimates Vk(nd) for each child decision node nd based on the probability P(nd | nc).
Clearly, the state-value estimate Vk(nd) of a child decision node is given a higher
weighting in the sum if the probability P(nd | nc) is higher.

For updating state-value estimates, the action-value of the best child chance node
is selected, as we have already encountered in Minimum Monte-Carlo backups.

Vk(nd) =


0 if s(nd) is a goal

D if s(nd) is a dead end

min
{

D, minnc∈S(nd) Qk(nc)
}

otherwise

Qk(nc) = c(nc) +
∑nd∈S(nc) P(nd | nc) ·Vk(nd)

Pk(nc)

(3.4)

Here, Pk(nc) = ∑nd∈S(nc) P(nd | nc), representing the sum of the probabilities of
all child decision nodes of nd that have been explicated and visited. Full Bellman
Backups assume all child nodes are explicated and initialized, and thus effectively
disregards the normalizing term Pk(nc) in Equation 3.4 as Pk(nc) = 1.

Bellman backups are derived directly from the Bellman optimality equation, as
we have already encountered in Equation 2.3. Thus, a flavor of UCT using Bellman
backups is anytime optimal given a correct selection of ingredients that will ensure
the whole search tree is eventually explored.

3.3.3 Heuristic Function

As described in Section 2.2.1, heuristics for planning are domain-independent. A
heuristic h : S → R, gives us an estimate of how much it costs to reach a goal from
the given state s.

In this report, we consider the following heuristics: zero, hadd, hmax, LM-Cut (see
Section 2.2.1 for details). zero is the trivial heuristic which simply maps all states to
an estimate of 0.

When choosing a heuristic function, we must keep the cost of computing the
heuristic in-mind, and whether it is admissible or not. Computing LM-Cuts is expen-
sive and hence we would expect the number of playouts that can be performed in a
second to be significantly less than if hadd was used.

As described in Section 3.2.2, we use the heuristic in Q-Value initialization by
taking a weighted sum over successor decision nodes, and after the simulation phase
as an estimate of the remaining cost after the playout (if any) to reach a goal. That
is, once a simulation has been completed, we add a heuristic estimate to the cost of
the rollout and then use the backup function to propagate these values up the search
tree. By doing so, we have an estimate of the cost of reaching a goal node from the
tip node of a trial.

Unfortunately, the heuristic is not always a good estimate for the cost of reaching
the goal from a given state and can sometimes be misleading. Heuristics based on
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the delete relaxation, such as hadd, assume that once a proposition is true, it is always
true. This assumption can lead to uninformative heuristic values as we encountered
in the CosaNostra Pizza experiment, which will be discussed in Section 4.2.3.

3.3.4 Outcome Selection

Outcome selection deals with selecting the outcome after applying an action. In terms
of our search node representation, outcome selection deals with choosing a decision
node among the children of a chance node. We only support Monte-Carlo sampling
in our framework, in which we randomly sample child decision nodes based on their
probabilities P(nd | nc).

Although we only provide one selection for this ingredient, we maintain it in our
UCT framework for future work. As Keller and Helmert mention, the only search
based algorithm that does not use Monte-Carlo sampling is Anytime AO* [Bonet and
Geffner, 2012]. Instead, Anytime AO* deals with AND/OR graphs, and chooses the
outcome that has the ‘biggest potential impact’ in the partial graph.

3.3.5 Simulation Function

As we describe in the general UCT algorithm presented in 3.2.2, the simulation
function is used to choose which action to take in a given state in the simulation
phase where we perform playouts.

Several simulations with a decision node nd in the trial path, effectively act as
an indicator to how promising a search node is, and hence represent an estimate for
Vk(nd) once the information gained from each simulation is backpropagated through
the search tree.

Traditional MCTS-based algorithms use a random simulation function, in which
each available action in the state has the same probability of being selected. However,
this is not very suitable for SSPs as we can continuously loop around a set of states
and never reach a goal state. Moreover, using a random simulation function requires
an extremely large number of simulations to obtain a good estimate for state-values
and action-values within the search tree.

Because of this, the simulation phase in MCTS-based algorithms for planning is
often neglected and replaced by a heuristic estimate. In our UCT framework, this is
equivalent to setting the trial length to be 0. In this case, we finish a trial once we
expand the tip node of the trial, calculate a heuristic estimate for the state of the tip
node, and backup that estimate.

However, there can be situations where the heuristic function is uninformative
and thus misguides the search. In such a scenario, it may be more productive to use
a random simulation function to calculate estimates rather than using the heuristic.

The simulations would be much more effective if we had a simulation function that
uses domain-specific knowledge to guide the search. Thus, we may include ASNets
in our simulation functions, and exploit the knowledge of the local environment that
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an ASNet has learned. We discuss using ASNets as a simulation function in Section
3.4.

For the sake of posterity and the ability to model the algorithms presented in
THTS, we also provide a heuristic-guided simulation function. This simulation func-
tion selects the action with the highest Q(s, a), as calculated by the heuristic function,
at each step in the simulation.

Choosing a Backup Function when using a Simulation Function

Ideally, Bellman backups should not be used with a simulation function unless we can
guarantee that the simulations will always provide a good estimate of the state-values
and action-values within the search tree. To understand why this is the case, let us
consider random simulations.

A single random simulation from a decision node nd clearly does not give a
good estimate of the state-value Vk(nd). However, as we do more and more of these
simulations and backpropagate the results of these simulations, Vk(nd) will slowly
converge to the optimal state-value.

Thus, when performing a backup on a chance node nc, we should weight the
sum by the number of times a child decision node nd has been visited Ck(nd), not
its transition probability P(nd | nc). This is especially true when using random
simulations, as the simulations are highly susceptible to random noise.

Therefore, when using a simulation function that is not very informative and does
not use any knowledge of the problem or the environment, we should consider using
either Monte-Carlo or Min-Monte-Carlo backups.

3.3.6 Trial Length

Given that we are dealing with planning problems which may have loops and dead
ends, this means that trials or simulations could take infinite steps to reach a goal.
Thus, we must introduce the trial length, which bounds how many steps can be
applied in the simulation phase.

Moreover, the trial length allows us to adjust the lookahead capability of a UCT
algorithm. By setting the trial length to be very small, we can focus the search on
nodes closer to the root node, much like breadth-first search [Keller and Helmert,
2013]. For our experiments, we found that setting the trial length to be 0, and hence
not performing any simulations gave the best results for domains where the heuristic
function is informative, and hence provides a good estimate of the cost to reach the
goal from the current state.
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3.4 Using ASNets as a Simulation Function

An ASNet learns a policy π : A× S→ [0, 1], where π(a | s) represents the probability
action a is applied in state s. Using this policy, we can bias the simulation function to
navigate parts of the search space that the trained ASNet believes is promising.

We introduce two simulation functions that make use of a trained ASNet: Stochas-
tic ASNets and Maximum ASNets. As their names suggest, Stochastic ASNets simply
samples from the probability distribution given by the policy to select an action at
each simulation step, while Maximum ASNets selects the action a with the highest
probability - i.e. a← arg maxa∈A(s)π(a | s).

Using domain-specific knowledge in the simulation phase of MCTS is often called
using heavy playouts, while using a random simulation function is known as soft
playouts. Heavy playouts are called ‘heavy’ because they often require some compu-
tation overhead. In our case, this is evaluating the current state using an ASNet to get
π(s). Ideally, heavy playouts will focus the search process by using domain-specific
knowledge.

It is important to note that although an ASNet has learned domain-specific knowl-
edge, ASNets is a domain-independent planning algorithm.

When is it worth using ASNets as a simulation function?

Given that an ASNet has learned some useful features or tricks about the environment
or domain of the problem that we are trying to solve, we ideally should expect an
ASNet-based simulation function to guide the search process in UCT much better
than if we were to use a random simulation function.

In turn, this will lead to a smaller number of simulations required to obtain good
state-value and action-value estimates in the search tree. Thus, using UCT with
ASNets as a simulation function can help the search converge to the optimal policy in
a much smaller number of trials than if random simulations were used, despite the
increased computational cost of evaluating the learned policy of an ASNet.

Moreover, as UCT balances the trade-off between exploration and exploitation
through UCB1, our algorithm will still perform search and can determine whether
the trial paths an ASNet has suggested are ideal. That is, by combining UCT with
ASNets as a simulation function, we are able to improve suboptimal learning and
stay robust to any changes in the environment.

When is it not worth using ASNets as a simulation function?

Using ASNets as a simulation function may not be very robust if the learned policy
is misleading and hence uninformative. Robustness indicates how well UCT can
overcome the bad information provided by an ASNet within the time limit we give
UCT at each planning step.

As the navigation of the search space is heavily influenced by the state-value and
action-value estimates we obtain from completing a large number of simulations,
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UCT with ASNets could require a significantly large number of simulations in order
to converge to the optimal policy in comparison to random simulations.

However, given the correct selection of ingredients that guarantees that we will
never stop exploring, a flavor of UCT which uses a ASNet-based simulation function
will nevertheless converge to the optimal policy, and is hence anytime optimal.

Since there is no way to reduce the influence of an ASNet in Stochastic and
Maximum ASNets as more and more simulations are completed, we introduce mixed
simulation functions which introduce random noise into ASNet-based simulations.

A mixed simulation function takes two different simulation functions, and mixes
the action selection at each step of the simulation between the two simulation func-
tions with a certain probability. That is, both simulation functions may be used in
a single simulation. For example, we could create a mixed simulation function that
uses random simulations 30% of the time, and stochastically samples an action from
the learned policy of an ASNet 70% of the time.

It is clear that mixing random simulations with ASNet-based simulations can help
navigate the search process away from any misinformation an ASNet provides us.
Thus, by introducing mixed simulation functions, we can moderately combat any
misleading actions that ASNets may suggest and ensure robustness of our search.
However, in such a scenario, it would probably be more effective to just use plain
UCT and disregard the policy learned by an ASNet.

How should you choose between using Stochastic ASNets and Maximum ASNets?

Of course, Maximum ASNets will completely bias the simulations towards what an
ASNet believes is the best action for a given state. If the probability distribution
returned by the learned policy of the ASNet is extremely skewed towards a single
action, then we could say that this ASNet is ‘confident’ in its decision to take this
action. Thus, in such a scenario, it may be beneficial to use Maximum ASNets.

On the other hand, if the probability distribution is relatively uniform, then using
Stochastic ASNets as a simulation function would more likely be the better choice, as
the ASNet may be uncertain and not very ‘confident’ in which action it should take
in the given state. However, this could also be because each action leads to a goal
with a similar cost, though this is not usually the case.

Thus, to determine which ASNet-based simulation function to use, we should
consider the planning domain and the specific problems we are trying to solve within
that domain, and whether an ASNet alone is able to solve these problems reliably.
Moreover, we should also consider how well the ASNet has been trained and how
this is reflected in the probability distribution returned by the policy.

Summary

We introduced two new simulation functions based on ASNets: Stochastic ASNets
and Maximum ASNets. By using these simulation functions, we can guide the
navigation of the search tree to what ASNets believes are promising parts of the



§3.5 Using ASNets in UCB1 35

search space, and ideally minimize the number of simulations required for UCT to
converge to the optimal policy.

Moreover, given that UCT still performs search, we are able to improve any
suboptimal learning of an ASNet and combat any changes in the environment or the
domain. Thus, we get the best of both worlds.

3.5 Using ASNets in UCB1

As we described in Section 3.3.1, UCB1 allows us to balance the trade-off between
exploration of actions in the search tree that have not been applied often, and ex-
ploitation of actions that we already know have good action-value estimates based on
the previous trials.

By including an ASNet’s influence within UCB1, we hope to further bias the
action selection towards what ASNets believes are promising actions in a given state,
whilst maintaining the fundamental balance between exploration and exploitation.

This will help us achieve the goals we previously defined in Section 3.1: learn
what we have not learned, improve suboptimal learning, and be robust to changes in
the environment or domain.

3.5.1 Simple ASNet Action Selection

Let π(nc) = π(a(nc) | s(nc)). In the action selection step, we select the child chance
node nc of a decision node nd that maximizes Simple-ASNet(nd, nc):

Simple-ASNet(nd, nc) =
M · π(nc)

Ck(nc)
+ UCB1(nd, nc)

=
M · π(nc)

Ck(nc)
+ B ·

√
log Ck(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

(3.5)

Where M is a parameter which we call the influence constant and, similar to
UCB1, if a child chance node nc has not been visited before (i.e. Ck(nc) = 0), we set
Simple-ASNet(nd, nc) = ∞ to force its exploration.

Intuition

We have added a new ‘reward’ term to UCB1, M ·π(nc)/Ck(nc). This term essentially
forces UCB1 to explore the actions that ASNets wants to exploit, since π(nc) ∈ [0, 1].
That is, we force the exploitation of ASNets for exploration.

M is the influence constant which allows us to scale the influence of ASNets
within the action selection. Clearly, a higher value of M increases the influence of
an ASNet in the whole Simple-ASNet term, while a lower value of M decreases
the influence of an ASNet. In practice, M should be empirically selected based on



36 Combining Search with Action Schema Networks

the problem we are dealing with, and how well the ASNet has learned to solve that
problem.

We divide M ·π(nc) by Ck(nc) so that the influence of an ASNet diminishes in the
Simple-ASNet term as an action is applied more often. Hence, as we show later, the
whole Simple-ASNet term eventually converges to the optimal action-value Q∗(nc)
as an action is applied infinitely often, given a correct selection of ingredients that
guarantees the whole search tree is explored.

Therefore, we expect that Simple-ASNet action selection will be robust to any
bad information provided by the policy of a trained ASNet. Obviously, the higher
the value of M, the more trials we require to combat the misleading policy provided
by an ASNet.

Analysis

We now provide a sketch of a proof that Simple-ASNet action selection will eventually
converge to the optimal policy and thus select the optimal action.

It suffices to show that the ASNet term M · π(nc)/Ck(nc), converges faster to 0
than the UCB1 exploration term B ·

√
log Ck(nd)/Ck(nc), as Ck(nc) → ∞. This is

trivial to prove as Ck(nc) is linear in the denominator of the ASNet term, while it is a
square root in the denominator of the UCB1 exploration term. Thus, Simple-ASNet

action selection decomposes into UCB1 as Ck(nc)→ ∞.
Now, we can generalize and use the proof presented by Kocsis and Szepesvári

[2006] to show that Simple-ASNet action selection will converge to the optimal action.

3.5.2 Ranked ASNet Action Selection

One pitfall of using Simple-ASNet action selection is that all child chance nodes must
be visited at least once before we truly consider the policy learned by an ASNet, as
Simple-ASNet(nd, nc) = ∞ if Ck(nc) = 0.

Ideally, we should be able to use the knowledge learned by an ASNet to select the
order in which unvisited chance nodes are explored during action selection. Thus,
we introduce Ranked-ASNet action selection, an extension to Simple-ASNet action
selection.

Ranked-ASNet(nd, nc) =


Simple-ASNet(nd, nc) if ∀n′c ∈ S(nd), Ck(n′c) > 0

−∞ if Ck(nc) > 0

π(nc) otherwise
(3.6)

The first condition stipulates that all chance nodes are selected and visited at least
once before Simple-ASNet action selection is used. Now, unvisited child chance
nodes are visited in order of their probability within the probability distribution of
the policy π learned by an ASNet. That is, the order in which the children are visited
is determined by each child’s rank in the policy.
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Intuition

Given that an ASNet has learned some useful knowledge of the environment and
which action to apply at each step, we ideally would expect Ranked-ASNet action
selection to require a smaller number of trials to converge to the optimal action in
comparison with Simple-ASNet action selection.

To understand why this is the case, consider a decision node nd with 10 child
chance nodes, nc1 , ... , nc10 . Let us assume that π(nc1) = 0.6, π(nc2) = 0.32 and
π(nc) = 0.01 for all other chance nodes, nc3 , ... , nc10 . Assume that nc2 represents
the optimal chance node while nc3 , ... , nc10 represent chance nodes with trial paths
which may end up in a dead end after a few planning steps with an extremely high
probability.

In this scenario, we obviously do not want to select nc3 , ... , nc10 for exploration
before nc1 and nc2 as this would likely represent wasted search time with very little
information gained. Ranked-ASNet action selection will select nc1 first, and then nc2

the optimal chance node. This is clearly more ideal than choosing child chance nodes
at random.

Although the chance nodes nc3 , ... , nc10 will eventually be visited, it is much better
to focus the initial stages of the search on what is believed to be the promising parts of
the search space. By doing so, we gain and propagate the most valuable information
up the search tree in the limited time we are given.

On the other hand, if the policy learned by an ASNet is misleading and uninfor-
mative, then Ranked-ASNet may not be as robust as Simple-ASNet. If the optimal
action has a very low probability in the policy, then we require an increased number
of trials to converge to this optimum due to the ‘ranking’ of actions.

Analysis

The proof of optimality shown for Simple-ASNet action selection holds for Ranked-
ASNet action selection, as we can guarantee that all child chance nodes will eventually
be explored.

3.5.3 Summary

We have demonstrated how we can incorporate the policy learned by an ASNet into
the action selection ingredient, by introducing a new term in the UCB1 formula that
forces the exploitation of ASNets for exploration in the search tree.

We have also shown how we can decay the influence of an ASNet as we apply
and visit a chance node it suggests more frequently, and sketched a proof showing
that Simple-ASNet will eventually select the optimal action.

Finally, we introduced Ranked-ASNet action selection, a simple extension to
Simple-ASNet action selection that selects unvisited chance nodes according to their
corresponding ranking in the probability distribution given by the learned policy.

With these new ASNet-influenced action selection ingredients in mind, we can
hopefully overcome the issues we encounter when using either ASNets or UCT alone,
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and achieve the goals we discussed in Section 3.1. By combining ASNets with UCT,
we evidently get the best of both worlds.

3.6 ASNets as a Simulation Function versus ASNets in UCB1

Using ASNets in a simulation function effectively allows us to calculate a state-value
estimate Vk(nd) for the tip node in a trial nd. Thus, the state-value and action-value
estimates within the search tree are directly derived from what the ASNet suggested
during the simulation phase.

On the other hand, using ASNets during action selection by incorporating it within
UCB1 allows us to balance the trade-off between the exploration and exploitation of
explicit nodes in the search tree. Thus, the state-value and action-value estimates
are not immediately derived from what an ASNet suggests during action selection,
unless we combine ASNet action selection with ASNet-based simulations.

Moreover, Simple-ASNet and Ranked-ASNet action selection are more robust
to any misleading information an ASNet has learned. Since we can decrease the
influence of ASNets as we apply an action the network has suggested more frequently,
we will eventually explore actions that may have a small probability π(a | s), but are
in-fact optimal. Although this is theoretically also the case when using ASNets as a
simulation function, we may require hundreds of thousands or even millions more
trials in comparison to achieve this.

Our experiments show that ASNets should only be used as a simulation function
in problems where the domain-independent planning heuristic is misleading and
thus gives uninformative state-value estimates, as we have previously discussed in
Sections 3.3.3 and 3.3.5. In most scenarios, using ASNets in action selection is more
ideal for the reasons previously mentioned.
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3.7 Ingredient Configurations

In this section, we demonstrate some of the flavors of UCT we can specify using our
general UCT framework. In practice, the selection of ingredients we choose when
using ASNets with UCT depends on how well an ASNet can solve the problem we
are dealing with, and how informative the learned policy is.

3.7.1 Available Ingredients

• Action Selection: UCB1, Simple-ASNet, Ranked-ASNet

• Backup Function: Monte-Carlo, Minimum Monte-Carlo, (Partial) Bellman

• Heuristic Function: zero, hadd, hmax, LM-Cut

• Outcome Selection: Monte-Carlo

• Simulation Function: Random, Heuristic-Guided, Stochastic ASNet, Maximum
ASNet, Mixed Random with ASNet

• Trial Length: any positive integer

Optional features: Q-value initialization of children of a tip node, explicit nodes
in the search tree for the simulation phase.

3.7.2 Flavors of UCT

For our experiments, we use UCT* as the baseline flavor of UCT. From here onwards,
plain UCT and UCT* is synonymous.

We assume that all flavors of UCT use Monte-Carlo outcome selection, as that
is the only option we provide. Moreover, any heuristic function can be used with
each flavor of UCT. Our experiments showed that using hadd helped the tree search
converge to a good solution much faster than if hmax or LM-Cut was used.

We now specify the main flavors of UCT we will consider in our experiments in
Table 3.1.

Action Selection Backup Function Simulation Function Trial Length

UCT/UCT* UCB1 Bellman None 0

Rollout-based UCT UCB1 (Min) Monte-Carlo Random Problem dependent

UCT + Simple ASNets Simple ASNets Bellman None 0

UCT + Ranked ASNets Ranked ASNets Bellman None 0

UCT + Stochastic ASNets UCB1 Depends on π(a | s) Stochastic ASNets Problem dependent

UCT + Maximum ASNets UCB1 Depends on π(a | s) Maximum ASNets Problem dependent

Table 3.1: Examples of Ingredient Configurations
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3.8 Summary

In this chapter, we discussed the goals we hope to achieve in combining UCT with
ASNets, and defined a general ingredient-based framework for UCT that is similar
to THTS [Keller and Helmert, 2013]. Using this framework, we then analyzed how
different selections of ingredients can influence the search of UCT.

Next, we introduced ASNets as a simulation function through Stochastic ASNets
and Maximum ASNets. We argued that you should consider using ASNets as a
simulation function if the heuristic estimates are uninformative and an ASNet has
learned some useful knowledge about the environment. In such a situation, we can
combine the advantages of both UCT and ASNets together to get the best of both
worlds.

We then introduced Simple-ASNet action selection, an extension to UCB1 that
leverages the policy learned by an ASNet. We discussed how the influence of an
ASNet in Simple-ASNet will decay as an action is applied more often, and gave a
sketch of a proof that Simple-ASNet will eventually converge to the optimal pol-
icy and thus select the optimal action. Next, we discussed the potential pitfalls
of Simple-ASNet action selection and introduced Ranked-ASNet action selection,
which selects unexpanded child nodes according to their ranking within the policy,
and uses Simple-ASNet otherwise.

By incorporating ASNets into UCB1, we can directly bias the actions selected by
UCT for the exploration of actions an ASNet wishes to exploit. Hence, we can obtain
the best of both worlds.

Finally, we argued the differences between using ASNets as a simulation function
and within action selection in the UCB1 term, and presented some flavors of UCT
that can be specified using our general framework.

In the next chapter, we will begin discussing the experimental configuration, and
the domains and problems we will be evaluating our algorithms on.



Chapter 4

Empirical Evaluation

In this chapter, we will present the results of our experiments in combining UCT with
ASNets. Firstly, we will describe the common configurations that we will use to run
UCT, and to train an ASNet.

Next, in Section 4.2, we will review and analyze the problems and domains we
evaluate our algorithms on. Finally, we give a detailed discussion the results of our
experiments in Section 4.3

4.1 Experimental Setup

All ASNet and UCT experiments were run on an Amazon Web Services EC2 c5.4x
large instance with an Intel Xeon Platinum 8000 series processor. In total, this
instance has 16 virtual CPUs and 32GB of memory.

Each experiment was limited to one CPU core with a maximum turbo clock speed
of 3.5 GHz. We did not place any restrictions on the amount of memory an experiment
used.

4.1.1 UCT Configuration

The baseline UCT configuration was UCT* (as described in Section 3.7), with hadd as
the heuristic function and the UCB1 bias B set to

√
2. We use hadd because in our

experiments, it allowed UCT to converge to a good solution in a reasonable time.
Recall, UCT* completes a trial when an unexpanded decision node is reached,

and a heuristic estimate for the given state is calculated and backed up the search
tree. This allows us to focus the search on shallower parts of the search space, much
like breadth-first search [Keller and Helmert, 2013].

For all problems with dead ends, we enable Q-value initialization, as it helps us
avoid selecting a chance node for exploration as it may lead to a dead end. We did not
enable Q-value initialization for problems without dead ends because estimating Q-
values is computationally expensive, and not beneficial in comparison to the number
of trials that could have been performed in the same time frame.

We have already presented the main flavors we will consider in Table 3.1. The
flavor of UCT we use with ASNets is dependent on the domain and problem we are
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tackling, and whether an ASNet has learned a good policy in such a scenario.
Unless otherwise specified, we gave UCT 10 seconds to do trials at each plan-

ning step, and limited the maximum number of trials at 10,000 per planning step.
Moreover, we set the dead end penalty to be 500. We gave each planning round a
maximum time of 1 hour, and a maximum of 100 planning steps. We ran 30 rounds
per planner for each experiment.

4.1.2 ASNet Configuration

We use the same ASNet hyperparameters as described by Toyer et al. [2018] to train
a network. To summarize, we used an ASNet with “three action layers and two
proposition layers, with a hidden representation size of 16 for each internal action
and proposition module”, and enabled LM-Cut heuristic features.

We trained the network with an Adam optimizer using a batch size of 128, learning
rate of 0.0001, and a dropout of 0.25. We imposed a strict two hour time limit to train
the network, though in most situations, the network finished training within one
hour.

We trained an ASNet using an LRTDP-based teacher that used LM-Cut as the
heuristic to compute optimal policies. We only report the time taken to solve each
problem for the final results for an ASNet, and hence do not include the training
time.

4.2 Domains and Problems

We evaluate our algorithms on a wide-variety of domains, aimed at showing that
combining UCT with ASNets can give us the best of both worlds.

4.2.1 Stack Blocksworld

We introduced the deterministic Blocksworld domain in Section 2.1.2. As we have
already discussed in the ‘Learn what we have not learned’ goal in Section 3.1.1, an
ASNet trained to unstack blocks from a single tower and put them all down on the
table, would fail completely to then stack these blocks into a single tower. This is
because the network never learned how to stack blocks on top of each other during
the training phase, as all the training problems were focused on unstack blocks from
a single tower (see Figure 3.1). Thus, the training set is not representative of the test
set.

This represents a worst-case scenario for ASNets. On the other hand, stacking
blocks into a single tower is a relatively easy problem for UCT. However, as the
number of blocks in the problem increases, UCT will begin to struggle as the number
of states and actions increase exponentially.

Our goal is to show that by combining UCT with ASNets, we can overcome the
misleading information returned by the policy learned by the ASNet. Hopefully, we
will be able to achieve similar performance to that achieved when using UCT alone.



§4.2 Domains and Problems 43

4.2.2 Exploding Blocksworld

Exploding Blocksworld is an extension to the original Blocksworld domain that in-
corporates probabilities and dead ends. In Exploding Blocksworld, putting down a
block can detonate and destroy the block or the table it was put down on, with a
probability of 10% and 40% respectively. Once a block is exploded, we can no longer
use the block as it ‘disappears’ from the environment.

Thus, a good policy to an Exploding Blocksworld problem avoids placing a block
down on the table, or down on another block that is required for the goal state.
However, it is possible to construct a problem where we must perform one of these
actions at some point during the planning execution. Thus, Exploding Blocksworld
problems can have unavoidable dead ends.

It is very difficult for an ASNet to reliably learn to solve Exploding Blocksworld
problems. Firstly, each problem could have its own ‘trick’ in order to avoid dead ends
as much as possible, and reach the goal with the smallest cost. Given the limited
modelling capacity of the neural network, it is very difficult to learn a generalized
policy that characterizes all these tricks. Moreover, since each problem can have its
own ‘trick’, it is very likely that an ASNet will overfit to the problems it has been
trained on, and hence would fail to generalize to new problems it has not seen before.

We hope that by combining ASNets with UCT, we can exploit the limited knowl-
edge and ‘tricks’ learned by an ASNet to help navigate the search space, and solve
problems more reliably at a lower cost. In other words, we aim to ‘learn what we
have not learned‘ and ‘improve suboptimal learning‘ (see Section 3.1 on goals).

4.2.3 CosaNostra Pizza

The CosaNostra Pizza planning problem was first introduced by Toyer et al. [2018].
The objective of CosaNostra Pizza is to safely deliver a pizza from the pizza shop to
the waiting customer, and then return to the shop. There is only one two-way road
between the pizza shop and the customer (see Figure 4.1). On this road, there are a
series of toll booths.

At each toll booth, we can choose to either pay the toll operator or drive straight
through the toll booth without paying. By driving straight through the toll booth,
we save a time step, but the operator becomes angry. Angry operators will drop the
toll gate on you and crush your car with a probability of 50% when you next pass
through their toll booth. An angry operator will stay angry, even if you try to pay the
toll.

In CosaNostra Pizza, we must pass through each toll booth at least twice as there
is only one two-way road. Hence, the optimal policy is to pay the toll operators when
we are travelling to the customer to ensure a safe return, but to avoid paying the
operator on our trip back from the customer to the pizza shop [Toyer et al., 2018].

CosaNostra Pizza is an example of a problem with avoidable dead ends. That
is, by ensuring that we pay the toll operator on our trip to the customer, we can
guarantee that we can avoid any dead ends on the trip back. An ASNet is able to
learn this ‘trick’, and reliably solves a CosaNostra Pizza problem with any number of
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Toll 1 ... Toll nShop Customer

Figure 4.1: Two-Way CosaNostra Pizza

toll-booths, even when the network has been trained on problems with only 1-5 toll
booths.

Analysis

CosaNostra Pizza was designed to be extremely difficult for heuristic search plan-
ners that use determinising heuristics. As determinising heuristics assume that all
outcomes of an action can be made true, they fail to consider the 50% probability of
reaching a dead end when a toll operator is not paid, because such heuristics can
simply select the most convenient outcome. Thus, the heuristic will not reward states
in which a toll-operator has in-fact been paid, as it fails to comprehend the advantage
of paying the operator and avoiding a potential dead end.

The heuristics we are considering (hadd, hmax, and LM-Cut) are calculated through
delete relaxation, where once a proposition is true it stays true. In the context of
CosaNostra Pizza, this means that once we visit a location, we are always at the
location. Thus, the heuristic will suggest to never pay the toll operator, as it believes
that the agent is simultaneously at the shop and at the customer after delivering the
pizza.

Hence, ‘learning’ to pay the toll operator on the trip to deliver the pizza to the
customer requires extremely long reasoning chains. By performing a limited depth
search using a determinising heuristic, a heuristic search planning algorithm will
avoid paying a toll operator because it takes an extra step with no improvement in
the heuristic. Such an algorithm fails to take into account what could happen far in
the future if a toll operator is not paid now.

It is therefore not surprising to discover that plain UCT fails to solve CosaNostra
Pizza for problems with more than 4 toll booths. However, by combining UCT with
ASNets, we hope to vastly improve the ability of UCT to reliably solve CosaNostra
Pizza for problems with a larger number of toll booths by exploiting the optimal
policy learned by the ASNet.

One-Way CosaNostra Pizza

The problems described above assumed a single two-way road between the pizza
shop and the customer (Figure 4.1). This immediately lead to the uninformative
heuristic values we discussed.

However, if we were to convert the road into a one-way road (Figure 4.2), such
that the path to and back from the customer are different, then the heuristic estimate
will evidently be informative again because there are no longer any dead ends which
can be encountered.
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Toll 3Toll 4 Customer

Shop

Figure 4.2: One-Way CosaNostra Pizza

Clearly, the optimal policy for one-way CosaNostra Pizza is to never pay the toll
operator, as you can only pass through the same toll booth at most once. Although
one-way CosaNostra is a relatively easy problem to solve, we use it to demonstrate
how we can improve the suboptimal policy learned by an ASNet trained on one-way
CosaNostra Pizza (that has learned the trick to always pay the toll-operator before
delivering the pizza), by combining the network with search. That is, we want to
show that combining UCT and ASNets is robust to changes in the environment or
domain.

4.2.4 Triangle Tireworld

The objective in Triangle Tireworld [Little and Thiébaux, 2007] is to navigate a car
between the start and end location through a series of locations connected by one-way
roads that are arranged in the shape of a triangle (see Figure 4.3).

For each action to move the car from one location to another, there is a probability
of 50% that you will get a flat tire. However, there are spare tires at certain locations
(represented by black circles in Figure 4.3) which you can use to replace the flat tire
and continue navigating. If we have a flat tire, and there is no spare tire at the current
location, then we have reached a dead end.

Analysis

In a Triangle Tireworld problem, the tires are arranged in a way such that the optimal
policy navigates along the outside edge of the triangle (the path that follows all the
black circles in Figure 4.3), and hence reaches the goal with a probability of 1 [Toyer
et al., 2018]. This optimal policy also represents the longest path to the goal.

The shortest path to the goal follows the inside edge of the triangle, where no
location has a spare tire. However, the probability of a getting a flat tire and reaching
a dead end is 1− 0.5n, where n is the number of locations between the initial and
goal location on this shortest path. Clearly, this path is not ideal as we will incur the
dead end penalty with a probability of 1− 0.5n.

Triangle Tireworld was designed to mislead determinisation-based heuristics. It
does so by making the cheapest path in the determinisation to be the path with the
smallest probability of reaching the goal. Despite this, both ASNets and plain UCT
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Figure 4.3: The first three Triangle Tireworld problems [Little and Thiébaux, 2007]

are able to learn the ‘trick’ to always follow the outside edge of the triangle network
even when using a determinising heuristic, and thus avoid dead ends and incurring
the dead end penalty.

By combining ASNets with UCT in Triangle Tireworld, we aim to understand
how using a learned policy can affect the navigation of the search space, and hence
the number of nodes initialized and expanded within the search tree. We also hope
to demonstrate that combining both algorithms maintains robustness, and does not
introduce any new noise into the planning procedure.

4.3 Results

In this section, we will present and analyze the results of our experiments in detail.
In general, we found that UCT is robust to the bad information provided by a policy
learned by an ASNet if we use Simple-ASNet or Ranked-ASNet and select the
influence constant M appropriately.

Moreover, by combining ASNets with search, we can be robust to any changes in
the environment or domain, and solve problems more reliably and with a lower cost.
Finally, by using ASNets as a simulation function, we can vastly improve the perfor-
mance of UCT to solve problems in domains where the heuristic is uninformative or
misleading (e.g. two-way CosaNostra Pizza).

Thus, by combining ASNets with MCTS, we can get the best of both worlds.
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Experiment Result Tables

The numerical results for our experiments are presented in Tables 4.1, 4.2, 4.3, 4.4,
and 4.5 for Stack Blocksworld, Exploding Blocksworld, CosaNostra Pizza, one-way
CosaNostra Pizza, and Triangle Tireworld respectively. Each cell in the tables repre-
sents the following metrics in order:

1. Coverage: the number of successful runs of ASNets/UCT that reached a goal.

2. Mean Cost: the mean cost to reach a goal and the 95% confidence interval.

3. Mean Time: the mean time to reach a goal and the 95% confidence interval.

It is important to note that the cost and the time of runs of ASNets or UCT that
did not reach a goal are not included in the mean cost and mean time.

4.3.1 Stack Blocksworld

We train an ASNet on problems with 2-10 blocks, where the objective is to unstack
blocks in a single tower and put each block on the table (depicted in Figure 3.1). We
evaluate ASNets and UCT on problems with 5-20 blocks, where the objective is to
stack blocks that are initially all on the table into a single tower.

As we have previously explained in Section 3.1.1 and 4.2.1, this ASNet will com-
pletely fail to stack blocks into a single tower, as it has only learnt how to unstack
blocks. This is clearly reflected in the numerical results achieved by ASNets as pre-
sented in Table 4.1, where ASNets achieves a coverage of 0% for all test problems.

To demonstrate how UCT can combat the misleading information provided by the
policy learned by an ASNet, we use Simple-ASNet action selection with the influence
constant M set to 10, 50 and 100. We allocate each planning step n/2 seconds for all
runs of UCT, where n is the number of blocks in the problem.

We do not run experiments that use ASNets as a simulation function for the Stack
Blocksworld experiment. Using an ASNet-based simulation functions would result
in completely misleading state-value and action-value estimates in the search tree,
and hence UCT would achieve near-zero coverage. In fact, using random simulations
would be much more effective.

Analysis of Results

ASNets is unable to solve Stack Blocksworld for any of the problems for the reasons
we described above. UCT, however, is able to reliably achieve near-full coverage for
all problems up to 20 blocks. Although not depicted in Table 4.1, the coverage for
UCT decayed exponentially for problems with more than 20 blocks. Evidently, this is
because the number of reachable states and actions increases exponentially with the
number of blocks in the problem.

In general, as we increase M, the coverage of UCT with Simple-ASNet action
selection decays earlier as the problem size increases (see Figure 4.4). This is not
unexpected, as by increasing M, we increasingly ‘push’ the UCB1 term to select
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actions that an ASNet wishes to exploit, and hence misguide the navigation of the
search space. The actions that the ASNet wish to exploit in our case, are those that
will unstack a partially-built tower - this is clearly not ideal.

6 8 10 12 14 16 18 20
Problem Size

10

20

30

40

50

60

70

Mean Goal Cost
ASNets
UCT
UCT + Simple ASNets (M = 10)
UCT + Simple ASNets (M = 50)
UCT + Simple ASNets (M = 100)

6 8 10 12 14 16 18 20
Problem Size

0

100

200

300

400

500

Mean Goal Time
ASNets
UCT
UCT + Simple ASNets (M = 10)
UCT + Simple ASNets (M = 50)
UCT + Simple ASNets (M = 100)

6 8 10 12 14 16 18 20
Problem Size

0

100000

200000

300000

400000

500000

600000
Mean Number of Expanded Nodes (Goal)

UCT
UCT + Simple ASNets (M = 10)
UCT + Simple ASNets (M = 50)
UCT + Simple ASNets (M = 100)

6 8 10 12 14 16 18 20
Problem Size

0

5

10

15

20

25

30

Coverage

ASNets
UCT
UCT + Simple ASNets (M = 10)
UCT + Simple ASNets (M = 50)
UCT + Simple ASNets (M = 100)

Figure 4.4: Coverage for Stack Blocksworld

Nevertheless, UCT with Simple-ASNet action selection is able to achieve near-full
coverage for problems with up to 17 blocks for M = 10, 15 blocks for M = 50, and
approximately 11 blocks for M = 100. Thus, as we increase M, it is evidently more
difficult for UCT to account for the misleading actions that the ASNet is suggesting
in the limited time we give each planning step. Note, that due to the noise of UCT,
UCT with Simple-ASNet action selection achieves a higher coverage for 17 blocks
when M = 100, than when M = 50. We would expect the noise to even out as we
increase the number of rounds we evaluate our algorithms on.

Figure 4.5 depicts the mean number of expanded nodes in the search tree, for the
runs of UCT where a goal is reached. We can observe that in general, the higher M is
in Simple-ASNet, the higher the number of nodes that are expanded by UCT. This is
not surprising - as M increases, UCT requires more trials and hence more expanded
nodes in order to converge to the optimal policy. The ASNet term within Simple-
ASNet action selection will only decrease as the action an ASNet has suggested is
applied more often.

It is intriguing that we see a slight decrease in the coverage (Figure 4.4) and a
large increase in the mean number of nodes (Figure 4.5) expanded for UCT with
Simple-ASNet action selection with M = 100 for 8 and 9 blocks. We believe this is
due to the noise of UCT and poor guidance during the runs of UCT. In another run
of the same experiment, we were only able to achieve a coverage of 5/30 for 8 blocks
and 6/30 for 9 blocks – this suggests that the noise of UCT can affect the results
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Figure 4.5: Mean and 95% CI for the number of expanded nodes for Stack Blocksworld when
a goal is reached

significantly if we are unlucky.

Summary

Through the Stack Blocksworld experiment, we have shown how we can ‘learn what
we have not learned’ by correcting the bad actions an ASNet suggests, and help
ASNets stay robust to changes to the environment. We have demonstrated that as we
increase M in Simple-ASNet action selection, the coverage decreases and the number
of nodes expanded increases. UCT with Simple-ASNet action selection is relatively
robust to the misleading information provided by an ASNet, as we had theorized in
Section 3.5.
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ASNets UCT UCT + Simple ASNets (M=10) UCT + Simple ASNets (M=50) UCT + Simple ASNets (M=100)

blocks-10-stack 0/30
30/30

20.07 ± 0.93
52.18 ± 3.63s

30/30
20.8 ± 0.67
63.25 ± 2.98s

30/30
23.07 ± 4.08
91.67 ± 20.75s

30/30
23.0 ± 4.48

95.04 ± 22.42s

blocks-11-stack 0/30
30/30

21.93 ± 0.8
88.59 ± 4.09s

30/30
22.8 ± 0.8

100.38 ± 4.25s

30/30
23.47 ± 1.87
93.61 ± 11.83s

30/30
23.33 ± 1.81
103.22 ± 9.97s

blocks-12-stack 0/30
30/30

24.07 ± 0.75
104.27 ± 4.44s

30/30
25.2 ± 0.95
93.55 ± 6.56s

30/30
26.07 ± 1.1
98.05 ± 5.84s

27/30
28.0 ± 4.29

137.25 ± 25.77s

blocks-13-stack 0/30
30/30

27.07 ± 1.19
128.56 ± 7.17s

30/30
30.13 ± 3.32
137.15 ± 19.6s

30/30
27.73 ± 0.73
143.14 ± 5.22s

26/30
32.08 ± 6.82

166.24 ± 45.16s

blocks-14-stack 0/30
29/30

28.34 ± 0.98
141.95 ± 6.26s

30/30
29.93 ± 1.42

142.01 ± 12.66s

30/30
29.8 ± 0.91

173.02 ± 21.0s

27/30
28.81 ± 0.96
153.1 ± 8.21s

blocks-15-stack 0/30
29/30

31.38 ± 0.93
170.22 ± 6.09s

30/30
34.27 ± 3.93
157.36 ± 24.75s

29/30
33.79 ± 2.73
195.85 ± 28.7s

22/30
32.55 ± 2.34
149.77 ± 17.56s

blocks-16-stack 0/30
30/30

33.47 ± 1.19
179.83 ± 12.86s

28/30
37.07 ± 4.71

181.98 ± 32.48s

26/30
33.62 ± 0.89

180.11 ± 25.69s

23/30
39.65 ± 5.09

243.09 ± 42.56s

blocks-17-stack 0/30
30/30

38.27 ± 4.5
240.04 ± 36.58s

28/30
38.43 ± 3.72
208.72 ± 35.47s

13/30
46.92 ± 10.32
353.73 ± 98.78s

28/30
38.93 ± 5.03

209.74 ± 36.92s

blocks-18-stack 0/30
30/30

38.6 ± 1.37
193.56 ± 16.04s

24/30
49.17 ± 6.41

295.86 ± 53.89s

22/30
57.64 ± 8.51
451.47 ± 77.67s

16/30
49.12 ± 10.16
358.39 ± 92.2s

blocks-19-stack 0/30
30/30

40.0 ± 2.03
197.12 ± 13.65s

16/30
54.5 ± 9.59

381.26 ± 91.74s

16/30
53.0 ± 9.48

379.12 ± 78.66s

8/30
44.75 ± 4.46
334.33 ± 47.94s

blocks-20-stack 0/30
28/30

42.14 ± 0.89
214.24 ± 8.11s

17/30
52.59 ± 7.15

355.33 ± 64.69s

12/30
60.67 ± 13.74

434.53 ± 128.91s

12/30
46.33 ± 6.24
296.3 ± 51.93s

Table 4.1: Results for Stack Blocksworld. We have not included the results for 5 to 9 blocks as they are essentially identical.
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4.3.2 Exploding Blocksworld

Training the ASNet

Selecting a training set for Exploding Blocksworld is extremely difficult, as some
problems may be absolutely trivial while others are impossibly hard. It is unfeasible to
train an ASNet with extremely difficult problems, as a single training iteration could
take more than an hour. Thus, we selected a variety of easy, medium and relatively
difficult problems by measuring how long LRTDP took to solve each problem, and
ignoring problems that took more then 2 minutes to solve. The final training set
consists of 15 problems selected from:

• The International Probabilistic Planning Competition (IPPC) 2006 (5 problems
from warm-up, 5 problems from competition final).

• Problems randomly generated by Felipe Trevizan, that have a probability of 1
to reach the goal (3 problems).

• Problems randomly generated by myself, that do not have a probability of 1 to
reach the goal (2 problems).

We increased the training time for this network to 5 hours, as calculating the
optimal policy for these problems is very expensive during the guided exploration
phase of training. Moreover, it should be noted that training the network required
approximately 30GB of memory.

Experiment

We evaluate ASNets and UCT on the first ten Exploding Blocksworld problems (p01-
p10) from the IPPC 2008 competition. We increased the UCB1 bias to 4, and set the
maximum number of trials to 30,000 in order to promote more exploration.

To combine UCT with ASNets, we use Ranked-ASNet action selection. Recall
that Ranked-ASNet selects unvisited chance nodes based on their ‘ranking’ within
the policy learned by an ASNet. This allows us to explore actions that the ASNet
believes are promising first. Hopefully, this will lead to more accurate state-value and
action-values estimates in the search tree, given the limited time to perform trials at
each planning step.

We use Ranked-ASNet over Simple-ASNet action selection because the initial
results we achieved for the former were more encouraging. We theorize this is because
the policy learned by the ASNet is generally informative, and hence assigns higher
probabilities to actions that are truly promising.

Analysis of Results

Table 4.2 presents the numerical results for this experiments. Note, that the coverage
for Exploding Blocksworld is an approximation of the true probability of reaching
the goal. Since we only run each algorithm 30 times, the results are susceptible to
chance.

http://ippc-2008.loria.fr/wiki/index.html
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As our training problems are most likely not representative of the IPPC 2008
problems we are evaluating our algorithms on, the policy learned by the ASNet
is suboptimal. For example, the ASNet is unable to reach the goal in any of the
experiments we ran for ex_bw_6_p04 and ex_bw_9_p07. On the other hand, UCT
alone is able to more reliably solve the majority of problems, as shown by the higher
coverage in comparison to ASNets in Table 4.2.

Moreover, we are able to achieve the performance of plain UCT at a minimum
when combining UCT with ASNets through Ranked-ASNet action selection, even if
ASNet achieved a coverage of 0%.

However, for certain configurations of UCT with Ranked-ASNet, we were able
to improve upon all other configurations. For ex_bw_10_p08, UCT with Ranked-
ASNet and M = 50 achieves a coverage of 10/30, while all other configurations of
UCT are only able to achieve a coverage of around 4/30. Despite that fact that the
ASNet achieves a coverage of 0/30 in this experiment, the general knowledge learned
by the ASNet helps us navigate the search tree more effectively and efficiently, even
if the suggestions provided by the ASNet are not completely optimal. The same
reasoning applies to the results for ex_bw_6_p04, where UCT with Ranked-ASNet

and M = 50 achieves a higher coverage than all other configurations.
In general, the results in Table 4.2 suggest that the influence constant M should

be empirically selected based on the domain we are trying to solve, or automatically
tuned during the search. Since the knowledge learned by an ASNet can be misleading
for some problems, and informative for others, we need to find a good balance for the
influence constant M. If M is too small, then we do not exploit the knowledge of an
ASNet enough, while if M is too big, we follow the suboptimal actions suggested by
an ASNet too often. An example of this is ex_bw_10_p08, where M = 50 achieves
a good balance between exploiting the ASNet too little (M = 10) and too much
(M = 100).

Summary

Through the Exploding Blocksworld experiment, we have demonstrated that we can
exploit the policy learned by an ASNet to achieve more promising results than plain
UCT, even if this policy is suboptimal.

Since the ASNet has learned ‘tricks’ from the training problems, some of these
tricks may be applied to the problems we are evaluating our algorithms on, while
some cannot. Because of this, we must empirically select the influence constant M
when combining UCT with an ASNet-influenced action selection ingredient. The
local knowledge learned by an ASNet may only be beneficial in some problems,
while detrimental in others.

Thus, this experiment has demonstrated that we can achieve all the goals we pre-
sented in Section 3.1: learn what we have not learned, improve suboptimal learning,
and be robust to changes in the environment. It is clear that by combining ASNets
with UCT, we can achieve the best of both worlds.
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ASNets UCT UCT + Ranked ASNet (M=10) UCT + Ranked ASNet (M=50) UCT + Ranked ASNet (M=100)

ex_bw_5_p01
16/30
8.0 ± 0.0

0.18 ± 0.14s

26/30
10.92 ± 0.52
102.51 ± 5.24s

25/30
10.96 ± 0.48
100.21 ± 6.01s

23/30
11.04 ± 0.58
94.17 ± 6.51s

25/30
11.04 ± 0.48
105.26 ± 4.83s

ex_bw_5_p02
10/30

12.0 ± 0.0
0.17 ± 0.01s

9/30
18.22 ± 1.62

175.01 ± 16.24s

6/30
17.0 ± 3.45

164.77 ± 34.89s

10/30
17.6 ± 2.85

166.29 ± 27.91s

12/30
17.33 ± 2.44
167.75 ± 24.5s

ex_bw_6_p03
6/30

10.0 ± 0.0
0.2 ± 0.04s

13/30
25.23 ± 8.86
222.27 ± 88.77s

11/30
30.0 ± 13.64

280.25 ± 135.07s

14/30
35.71 ± 7.87

352.14 ± 78.66s

14/30
28.43 ± 6.54

259.18 ± 65.16s

ex_bw_6_p04 0/30
11/30

14.55 ± 0.63
136.46 ± 6.75s

10/30
14.4 ± 0.6

125.74 ± 11.93s

15/30
14.4 ± 0.46

123.06 ± 5.75s

10/30
14.6 ± 0.69

126.61 ± 6.41s

ex_bw_7_p05
30/30
6.0 ± 0.0
0.19 ± 0.07s

30/30
6.13 ± 0.19
36.51 ± 2.4s

30/30
6.0 ± 0.0

38.11 ± 1.17s

30/30
6.0 ± 0.0

38.85 ± 1.15s

30/30
6.0 ± 0.0

39.41 ± 1.08s

ex_bw_8_p06
19/30

12.0 ± 0.0
0.42 ± 0.12s

28/30
13.93 ± 0.8

132.36 ± 8.11s

25/30
13.6 ± 0.83

113.56 ± 8.11s

27/30
13.33 ± 0.76
127.69 ± 7.59s

29/30
13.38 ± 0.74
111.66 ± 7.15s

ex_bw_9_p07 0/30
30/30

13.0 ± 0.73
107.11 ± 6.95s

30/30
12.07 ± 0.14
116.36 ± 1.4s

30/30
12.07 ± 0.14
102.57 ± 1.38s

30/30
12.33 ± 0.28
103.56 ± 3.16s

ex_bw_10_p08 0/30
5/30

36.4 ± 5.09
335.87 ± 54.56s

4/30
35.0 ± 7.58

340.82 ± 75.18s

10/30
38.6 ± 0.97

374.93 ± 12.01s

4/30
36.5 ± 9.14

344.06 ± 93.88s
ex_bw_11_p09 0/30 0/30 0/30 0/30 0/30

ex_bw_12_p10 0/30 0/30 0/30 0/30 0/30

Table 4.2: Results for Exploding Blocksworld. Note: ex_bw_7_p05 is a trivial problem.
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4.3.3 CosaNostra Pizza

As we have already discussed in Section 4.2.3, an ASNet is able to learn the trick to
pay the toll operators when we are travelling to the customer to deliver the pizza, and
avoid paying the tolls on the trip back to the pizza shop. We argued that this requires
very long chains of reasoning, which is why UCT is expected to struggle significantly.
Moreover, we analyzed why the heuristic estimates are uninformative and provide
little value to help us more efficiently navigate the search space.

We train an ASNet on problems with 1-5 toll-booths, and evaluate UCT and
ASNets on problems with 2 to 15 toll booths. In this experiment, we will consider
using ASNets as both a simulation function (Stochastic and Maximum ASNets), and
in the UCB1 term for action selection (Simple-ASNet and Ranked-ASNet with M =
100). The results of our experiments are presented in Table 4.3.

The optimal policy for CosaNostra Pizza takes 3n+ 4 steps, where n is the number
of toll booths in the problem. We set the trial length when using ASNets as a
simulation function to be b1.25 · (3n + 4)c. The 25% increase over the length of
the optimal policy allows us to give some leeway and deeper simulations which is
beneficial for Stochastic ASNets. We use Bellman backups as the policy learned by
the ASNet is informative, and hence gives accurate state-value estimates.

Analysis

UCT alone is only able to achieve full coverage for the problems with 2 and 3 toll
booths. On the other hand, ASNets is able to achieve full coverage for all prob-
lems. Using ASNets in the action selection ingredient through Simple-ASNet or
Ranked-ASNet with the influence constant M = 100, yields minimal improvements
over plain UCT (see Figure 4.6): we are only additionally able to achieve full coverage
for the problem with four toll booths.

To understand why this is the case, consider Figure 4.7, where we show the mean
number of expanded nodes when a goal is reached. Although Simple-ASNet and
Ranked-ASNet will guide the action selection to the optimal action, UCT will still
significantly explore other parts of the search space. Moreover, due to the uninfor-
mative heuristic, UCT does not know whether an action is good or not unless the
action has been applied in a trajectory to the goal state. This requires an exponential
increase in the number of trials and expanded nodes as the problem size increases,
as depicted in Figure 4.7.

However, we are able to much more reliably solve CosaNostra Pizza problems
when using ASNets as a simulation function. Since an ASNet is able to learn the
optimal policy, using ASNets as a simulation function allow us to obtain much better
state-value estimates for nodes in the search tree than those provided by a heuristic.
It is easy to see that when we use Maximum ASNets, the state-value V∗(nd) for the
tip node of a trial nd obtained from the simulation is optimal (assuming a sufficiently
large trial length).

UCT with Maximum ASNets as the simulation function is able to achieve full
coverage for all the problems. Since Maximum ASNets will always provide us with a
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Figure 4.6: Coverage for CosaNostra Pizza. The line for UCT + Ranked ASNets occludes
the line for UCT + Simple ASNets, and the line for UCT + Max ASNets occludes the plain
ASNets line.

path directly to the goal, UCT will do some search and then decide that the actions
suggested through Maximum ASNet simulations are the best it can achieve, and
begins exploiting that path. That is, the UCB1 term is effectively dominated by the
exploitation term −Qk(nc) (see Section 3.3.1). These statements are clearly reflected
through the number of expanded nodes for UCT + Maximum ASNets in Figure 4.7.

Similar reasoning applies to UCT with Stochastic ASNets as the simulation func-
tion. However, we see an exponential decay in the coverage as the problem size
increases above 10 toll booths. The reason for this is because as the problem size
increases, the probability of obtaining a path that leads directly to the goal decreases.
Hence, UCT cannot default to the path the ASNet has provided it, as this path may not
exist in the search tree. This is reflected through the increased number of expanded
nodes for UCT + Stochastic ASNets in Figure 4.7.

Summary

We have shown how using ASNets in UCB1 through Simple-ASNet or Ranked-
ASNet action selection can only provide marginal improvements over plain UCT
when the number of reachable states increases exponentially with the problem size,
and the estimates provided by the heuristic are uninformative.

We demonstrated how we can combat this issue by using ASNets as a simulation
function, which allows us to obtain much more accurate state-value and action-value
estimates in the search tree, and hence more efficiently explore the search space and
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Figure 4.7: Mean and 95% CI for the number of expanded nodes for CosaNostra Pizza when
a goal is reached. Only UCT + Max ASNets achieves full coverage.

find the optimal policy.
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ASNets UCT UCT + Max ASNets UCT + Stochastic ASNets UCT + Simple ASNet (M=100) UCT + Ranked ASNet (M=100)

cosanostra-n2
30/30

10.0 ± 0.0
0.09 ± 0.05s

30/30
10.0 ± 0.0

15.81 ± 1.09s

30/30
10.0 ± 0.0

25.83 ± 0.19s

30/30
10.73 ± 0.37
27.61 ± 1.47s

30/30
10.0 ± 0.0

73.13 ± 4.48s

30/30
10.0 ± 0.0

79.44 ± 0.74s

cosanostra-n3
30/30

13.0 ± 0.0
0.07 ± 0.03s

30/30
13.0 ± 0.0
36.57 ± 0.3s

30/30
13.0 ± 0.0

38.74 ± 0.35s

30/30
14.13 ± 0.42
42.93 ± 2.11s

30/30
13.0 ± 0.0

80.28 ± 1.34s

30/30
13.0 ± 0.0

108.35 ± 0.2s

cosanostra-n4
30/30

16.0 ± 0.0
0.15 ± 0.05s

5/30
17.6 ± 1.11
64.95 ± 7.16s

30/30
16.0 ± 0.0

54.51 ± 0.19s

30/30
18.13 ± 0.52
64.7 ± 3.17s

30/30
16.0 ± 0.0

104.45 ± 2.38s

30/30
16.0 ± 0.0

124.41 ± 7.27s

cosanostra-n5
30/30

19.0 ± 0.0
0.18 ± 0.05s

0/30
30/30

19.0 ± 0.0
73.31 ± 0.21s

30/30
22.0 ± 0.61
88.25 ± 4.08s

2/30
19.0 ± 0.0

119.55 ± 6.71s

1/30
27.0

245.67s

cosanostra-n6
30/30

22.0 ± 0.0
0.22 ± 0.05s

0/30
30/30

22.0 ± 0.0
93.41 ± 0.47s

30/30
25.6 ± 0.82

114.86 ± 6.54s
0/30 0/30

cosanostra-n7
30/30

25.0 ± 0.0
0.26 ± 0.05s

0/30
30/30

25.0 ± 0.0
121.02 ± 1.45s

30/30
29.53 ± 0.81
147.25 ± 7.32s

0/30 0/30

cosanostra-n8
30/30

28.0 ± 0.0
0.31 ± 0.05s

0/30
30/30

28.0 ± 0.0
89.11 ± 1.15s

30/30
34.33 ± 0.9

116.88 ± 5.38s
0/30 0/30

cosanostra-n9
30/30

31.0 ± 0.0
0.36 ± 0.05s

0/30
30/30

31.0 ± 0.0
102.9 ± 1.45s

30/30
37.33 ± 0.62
136.62 ± 4.38s

0/30 0/30

cosanostra-n10
30/30

34.0 ± 0.0
0.29 ± 0.06s

0/30
30/30

34.0 ± 0.0
197.99 ± 0.86s

30/30
41.6 ± 0.91

240.02 ± 19.3s
0/30 0/30

cosanostra-n11
30/30

37.0 ± 0.0
0.3 ± 0.03s

0/30
30/30

37.0 ± 0.0
226.04 ± 0.99s

29/30
45.69 ± 1.04
287.56 ± 17.49s

0/30 0/30

cosanostra-n12
30/30

40.0 ± 0.0
0.36 ± 0.02s

0/30
30/30

40.0 ± 0.0
255.1 ± 0.78s

25/30
50.32 ± 1.3

322.44 ± 27.56s
0/30 0/30

cosanostra-n13
30/30

43.0 ± 0.0
0.65 ± 0.05s

0/30
30/30

43.0 ± 0.0
285.2 ± 0.74s

11/30
56.09 ± 2.03

350.76 ± 54.76s
0/30 0/30

cosanostra-n14
30/30

46.0 ± 0.0
0.72 ± 0.05s

0/30
30/30

46.0 ± 0.0
314.55 ± 0.77s

10/30
58.0 ± 2.94

338.77 ± 68.49s
0/30 0/30

cosanostra-n15
30/30

49.0 ± 0.0
0.8 ± 0.05s

0/30
30/30

49.0 ± 0.0
345.66 ± 1.49s

5/30
64.6 ± 3.24

452.19 ± 107.4s
0/30 0/30

Table 4.3: Results for CosaNostra Pizza
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4.3.4 One-Way CosaNostra Pizza

In one-way CosaNostra Pizza, there is only one path which may be followed to travel
from the pizza shop to the customer, and back (Figure 4.2). The optimal policy in
one-way CosaNostra Pizza is to never pay the toll operator, as you will only ever
encounter the same operator once. Thus, the number of steps required to reach the
goal state following the optimal policy is n + 4, where n is the number of toll booths.

We use the same ASNet we trained in two-way CosaNostra Pizza (see Section
4.3.3) for this experiment. Clearly, the policy learned by this ASNet is suboptimal
(Figure 4.8), as it will always choose to pay the toll operator when travelling to the
customer to deliver the pizza on a two-way road. In fact, we found that this ASNet
would always suggest to pay the toll operator even if the pizza is already delivered
in one-way CosaNostra Pizza.

We evaluate our algorithms on problems with 2 to 15 toll booths. We will consider
using ASNets as a simulation function (Stochastic and Maximum ASNets) and within
the UCB1 term (Simple-ASNet with M = 10 and M = 50).

We use the same trial length of b1.25 · (3n + 4)c we used in the two-way CosaNos-
tra experiment (4.3.3), and use Bellman backups.

The numerical results of this experiment can be found in Table 4.4.
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Figure 4.8: Mean and 95% CI for the goal cost for one-way CosaNostra Pizza

Analysis of Results

One-Way CosaNostra Pizza is relatively trivial, with both ASNets and plain UCT
achieving full coverage for all problems. We have already explained that the policy
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learned by the ASNet is suboptimal, because it was trained on two-way CosaNostra
Pizza. Similarly, UCT does not always follow the optimal policy, opting to pay the
toll operator very occasionally (see the confidence intervals in Table 4.4). The reason
why this is the case is because UCT may have found a path to the goal, and decided
that it is no longer worth exploring other actions and begins exploiting that path.

When we use Simple-ASNet action selection with the influence constant M = 10
and M = 50, we achieve almost identical results to plain UCT. UCT is able to account
for the change in the environment of the problem, despite the fact the ASNet will
always suggest to pay the toll with π(pay-operator | s) ≈ 0.999....

It is also interesting to compare the number of expanded nodes when using
Simple-ASNets with different values of M, and against plain UCT (Figure 4.9). Once
we incorporate ASNets into UCB1, we increase the number of nodes that must be
expanded in the search process. This is not surprising, as an ASNet will always
favour paying the toll operator, and hence UCT must apply more search to discover
that paying the operator is in fact, not the optimal action. The same reasoning applies
to why more nodes are expanded as we increase the influence constant, M.
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Figure 4.9: Mean and 95% CI for the number of expanded nodes for one-way CosaNostra
Pizza when a goal is reached

When combining UCT with ASNets as a simulation function, we almost always
follow the optimal policy (see Table 4.4). To understand why this is the case, consider
the state-value estimate Vk(nd) obtained from a simulation for a tip node of the trial
nd. As the ASNet will always suggest to pay the toll operator, the state-value estimate
Vk(nd) is always bounded above by the optimal state-value for one-way CosaNostra
Pizza, no matter if we use Stochastic or Maximum ASNets (this is guaranteed by our
trial length). That is, V∗(nd) ≤ Vk(nd)− t, where t is the number of toll booths on
the path from the current state back to the pizza shop.
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Thus, the simulations provide much more meaningful estimates of the cost to
reach the goal than a heuristic, and UCT is quickly guided to the goal by the simula-
tion function. We can confirm this by observing that the number of expanded nodes
when using ASNets as a simulation function is minimized (Figure 4.9).

Summary

Thus, our experiments for one-way CosaNostra Pizza have shown that combining
UCT with ASNets can help us learn what we have not learned. That is, learning to
not pay the toll-operator if we encounter a one-way road, but to pay the operator if
we encounter a two-way road, as we may encounter the toll-operator again in the
future.

We have also shown that combining UCT with ASNets allows us to improve
the suboptimal policy which resulted from the changed environment. Although
the policy learned by the ASNet is not optimal for one-way CosaNostra Pizza, the
state-value estimates obtained from using ASNets as a simulation function provide
much more accurate estimates of the true cost to reach the goal in comparison to the
estimates provided by a planning heuristic. Altogether, this helps UCT converge to
the optimal policy in a much smaller number of trials.
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ASNets UCT UCT + Simple ASNets (M=10) UCT + Simple ASNets (M=50) UCT + Stochastic ASNets UCT + Max ASNets

cosanostra-n2-one-way
30/30
8.0 ± 0.0

0.07 ± 0.05s

30/30
6.0 ± 0.0

11.35 ± 0.05s

30/30
6.0 ± 0.0

12.89 ± 0.06s

30/30
6.0 ± 0.0

13.0 ± 0.06s

30/30
6.0 ± 0.0

11.74 ± 0.13s

30/30
6.0 ± 0.0

11.77 ± 0.07s

cosanostra-n3-one-way
30/30

10.0 ± 0.0
0.09 ± 0.05s

30/30
7.07 ± 0.14
14.13 ± 0.43s

30/30
7.0 ± 0.0

16.13 ± 0.11s

30/30
7.0 ± 0.0

16.35 ± 0.12s

30/30
7.0 ± 0.0

14.65 ± 0.14s

30/30
7.0 ± 0.0

14.66 ± 0.17s

cosanostra-n4-one-way
30/30

12.03 ± 0.07
0.07 ± 0.03s

30/30
8.53 ± 0.25
18.71 ± 0.86s

30/30
8.53 ± 0.21
21.77 ± 0.89s

30/30
8.5 ± 0.19

21.89 ± 0.83s

30/30
8.0 ± 0.0

11.15 ± 0.13s

30/30
8.0 ± 0.0
17.65 ± 0.1s

cosanostra-n5-one-way
30/30

14.03 ± 0.07
0.08 ± 0.03s

30/30
9.7 ± 0.26
22.53 ± 0.97s

30/30
9.5 ± 0.19
25.2 ± 0.79s

30/30
9.7 ± 0.17

26.73 ± 0.74s

30/30
9.0 ± 0.0

13.22 ± 0.17s

30/30
9.0 ± 0.0

21.27 ± 0.2s

cosanostra-n6-one-way
30/30

16.0 ± 0.0
0.14 ± 0.05s

30/30
10.5 ± 0.25
25.69 ± 1.09s

30/30
10.7 ± 0.24
30.61 ± 1.13s

30/30
10.77 ± 0.21
31.1 ± 1.48s

30/30
10.07 ± 0.14
18.99 ± 2.21s

30/30
10.0 ± 0.0

24.62 ± 0.11s

cosanostra-n7-one-way
30/30

18.0 ± 0.0
0.16 ± 0.05s

30/30
11.47 ± 0.23
28.77 ± 0.97s

30/30
11.8 ± 0.25
36.08 ± 1.31s

30/30
11.47 ± 0.19
33.6 ± 1.36s

30/30
11.0 ± 0.0
29.09 ± 0.37s

30/30
11.0 ± 0.0
28.67 ± 0.3s

cosanostra-n8-one-way
30/30

20.03 ± 0.07
0.19 ± 0.05s

30/30
12.63 ± 0.21
21.66 ± 0.67s

30/30
12.73 ± 0.24
25.01 ± 0.91s

30/30
12.9 ± 0.23
26.04 ± 0.9s

30/30
12.0 ± 0.0

32.84 ± 0.52s

30/30
12.0 ± 0.0
32.21 ± 0.1s

cosanostra-n9-one-way
30/30

22.0 ± 0.0
0.16 ± 0.05s

30/30
13.57 ± 0.27
23.91 ± 1.02s

30/30
13.73 ± 0.22
28.04 ± 0.94s

30/30
13.57 ± 0.21
28.52 ± 0.84s

30/30
13.0 ± 0.0
33.29 ± 2.7s

30/30
13.0 ± 0.0
36.93 ± 0.17s

cosanostra-n10-one-way
30/30

24.0 ± 0.0
0.18 ± 0.05s

30/30
14.47 ± 0.23
29.37 ± 3.44s

30/30
15.13 ± 0.25
35.41 ± 4.07s

30/30
15.1 ± 0.25
36.32 ± 4.32s

30/30
14.0 ± 0.0

39.78 ± 1.75s

30/30
14.0 ± 0.0

41.02 ± 0.14s

cosanostra-n11-one-way
30/30

26.0 ± 0.0
0.27 ± 0.04s

30/30
15.73 ± 0.24
32.99 ± 3.58s

30/30
16.07 ± 0.22
40.04 ± 4.82s

30/30
16.0 ± 0.26
40.3 ± 4.73s

30/30
15.0 ± 0.0

33.49 ± 3.48s

30/30
15.0 ± 0.0

45.92 ± 0.18s

cosanostra-n12-one-way
30/30

28.0 ± 0.0
0.31 ± 0.04s

30/30
16.63 ± 0.27
36.62 ± 4.68s

30/30
17.27 ± 0.31
45.2 ± 6.02s

30/30
17.33 ± 0.33
46.82 ± 6.76s

30/30
16.03 ± 0.07
31.68 ± 0.46s

30/30
16.0 ± 0.0

51.36 ± 0.29s

cosanostra-n13-one-way
30/30

30.0 ± 0.0
0.32 ± 0.04s

30/30
17.4 ± 0.23
40.38 ± 5.18s

30/30
18.53 ± 0.34
51.05 ± 6.78s

30/30
18.27 ± 0.28
52.03 ± 7.07s

30/30
17.03 ± 0.07
33.65 ± 0.61s

30/30
17.0 ± 0.0

40.57 ± 4.26s

cosanostra-n14-one-way
30/30

32.07 ± 0.14
0.37 ± 0.04s

30/30
18.67 ± 0.18
45.03 ± 5.99s

30/30
19.5 ± 0.35
56.9 ± 8.17s

30/30
19.73 ± 0.35
59.09 ± 8.22s

30/30
18.0 ± 0.0

52.88 ± 5.16s

30/30
18.0 ± 0.0

32.56 ± 0.34s

cosanostra-n15-one-way
30/30

34.0 ± 0.0
0.4 ± 0.04s

30/30
19.7 ± 0.28
49.83 ± 6.61s

30/30
20.53 ± 0.31
63.4 ± 8.7s

30/30
21.13 ± 0.34
65.15 ± 8.24s

30/30
19.0 ± 0.0

69.18 ± 0.74s

30/30
19.0 ± 0.0
38.7 ± 3.71s

Table 4.4: Results for One-Way CosaNostra Pizza
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4.3.5 Triangle Tireworld

The optimal policy in Triangle Tireworld is to follow the outer edge of the triangle
navigation map, such that each location contains a spare tire (see Figure 4.3). This
path ensures that we avoid all dead ends and reach the goal with a probability of 1.
A problem of size n in Triangle Tireworld has (n + 1)(2n + 1) locations, and takes
approximately 6n steps to reach the goal state if we follow the optimal policy [Little
and Thiébaux, 2007].

We train an ASNet on problems of size 1-3, and evaluate UCT and ASNets on
problems of size 1-10. We consider using ASNets both as a simulation function
(Stochastic and Maximum ASNets) and through UCB1 (Simple-ASNets with M = 10).
We set the trial length to be b1.25 · 6nc when a simulation function is used. The extra
25% over the length of the optimal policy gives some leeway which is beneficial to
Stochastic ASNets. The numerical results for this experiment are presented in Table
4.5.

Analysis of Results

As we discussed in Section 4.2.4, both UCT and ASNets are able to learn the trick of
following the outer edge of the triangle, despite the fact that the heuristic biases the
search towards the shortest path to the goal location which has an extremely high
probability of failure. Both UCT and ASNets achieve 100% coverage, as seen in Table
4.5.
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Figure 4.10: Mean and 95% CI for the number of expanded nodes for Triangle Tireworld
when a goal is reached. Note: all flavors of UCT achieve full coverage, except for UCT +
Stochastic ASNets (see Table 4.5).

As we might expect, UCT with the Maximum ASNet simulation function and
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UCT with Simple-ASNet action selection also give us 100% coverage. However,
using Maximum ASNets allows us to converge to the optimal policy much faster
than using Simple-ASNet action selection, as depicted by the significantly decreased
number of expanded nodes in Figure 4.10. This is because using Maximum ASNets
as a simulation function allows us to obtain the optimal state-value for the tip node
of a trial. This is much more informative than a heuristic which suggests the shortest
path to the goal.

It is also interesting to note that using Simple-ASNet for action selection yields
a much lower number of expanded nodes than when plain UCT is used. This is
because Simple-ASNet will immediately guide us away from any actions that take us
to a state that does not have a spare tire, while UCT has to discover that information
through a local search of the environment.

However, if we use Stochastic ASNets as the simulation function instead of Max-
imum ASNets, the coverage decreases exponentially as the problem size increases.
The reason why this is the case is because as the size of the problem increases, the
number of action modules and proposition modules in an ASNet also increases ex-
ponentially. As a result, evaluating the policy of an ASNet is more computationally
expensive. Because of this, we can only perform a very limited number of simulations
(less than 100 in many cases) in the 10 seconds UCT is given at each planning step.

This means that we cannot always reliably find the safest path to the goal which
follows the outer edge of the triangle, as we do not do enough trials to counter
the probabilities experienced with stochastic sampling. As such, the state-value and
action-value estimates in the search tree could be misleading, and suggest that we
move to a location that does not have a spare tire and hence could lead to a dead end
with a probability of 50%. However, by increasing the time limit per planning step,
we expect that UCT with Stochastic ASNets will achieve higher coverage. We do not
encounter this problem when using Maximum ASNets, as we are always following
the safest possible path in a simulation from the given state of the tip node of the
trial.

Summary

We have discussed how we can maintain the robustness of UCT and ASNets by
combining both of them together through ASNets as a simulation function, and
ASNets in UCB1. We have demonstrated that we should consider using ASNets as a
simulation function if it provides us with accurate estimates of the remaining cost to
reach a goal (previously discussed in Section 3.4).

We also discussed the potential pitfalls of using ASNets as a simulation function
when it is computationally expensive to evaluate a state to get the policy. In such
a scenario, we should consider either increasing the time we give to each planning
step, or use the policy learned by ASNet in action selection instead. Using ASNets in
action selection means that we only need to call an ASNet once in every trial (unless
ASNets is also used as a simulation function).
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ASNets UCT UCT + Simple ASNets (M=10) UCT + Stochastic ASNets UCT + Max ASNets

triangle-tire-1
30/30

5.53 ± 0.29
0.02 ± 0.01s

30/30
5.43 ± 0.29
17.9 ± 0.98s

30/30
5.27 ± 0.35
10.1 ± 0.64s

30/30
5.2 ± 0.41
17.98 ± 1.48s

30/30
5.43 ± 0.38
18.2 ± 1.2s

triangle-tire-2
30/30

11.3 ± 0.45
0.05 ± 0.01s

30/30
12.13 ± 0.44
59.35 ± 2.04s

30/30
11.37 ± 0.46
64.7 ± 2.59s

29/30
11.83 ± 0.61
62.66 ± 3.55s

30/30
11.83 ± 0.51
62.57 ± 2.58s

triangle-tire-3
30/30

17.2 ± 0.56
0.11 ± 0.01s

30/30
17.23 ± 0.59
71.51 ± 2.76s

30/30
16.67 ± 0.57
77.4 ± 3.19s

24/30
17.17 ± 0.97

111.51 ± 10.86s

30/30
17.33 ± 0.59
115.11 ± 3.86s

triangle-tire-4
30/30

23.37 ± 0.66
0.39 ± 0.02s

30/30
23.37 ± 0.9

130.47 ± 4.83s

30/30
24.03 ± 0.81
146.19 ± 4.7s

21/30
23.71 ± 0.87
179.47 ± 9.36s

30/30
23.67 ± 0.77

166.59 ± 10.55s

triangle-tire-5
30/30

28.87 ± 0.81
0.69 ± 0.03s

30/30
29.6 ± 0.86

193.14 ± 5.81s

30/30
29.07 ± 0.89
199.53 ± 5.71s

20/30
29.75 ± 1.07

201.87 ± 13.08s

30/30
30.27 ± 0.92
198.58 ± 6.71s

triangle-tire-6
30/30

34.87 ± 0.94
1.13 ± 0.04s

30/30
36.43 ± 0.84
261.78 ± 6.13s

30/30
35.8 ± 0.77

266.53 ± 6.05s

14/30
36.71 ± 1.31

282.38 ± 16.03s

30/30
36.13 ± 0.94
260.87 ± 7.07s

triangle-tire-7
30/30

40.77 ± 0.91
1.76 ± 0.04s

30/30
42.77 ± 1.02
325.49 ± 8.48s

30/30
42.8 ± 0.85
338.59 ± 7.6s

13/30
42.92 ± 1.55
377.02 ± 15.52s

30/30
42.3 ± 1.17

341.2 ± 13.96s

triangle-tire-8
30/30

46.83 ± 1.12
2.57 ± 0.06s

30/30
49.37 ± 1.08
393.69 ± 9.28s

30/30
48.13 ± 1.09
393.25 ± 9.06s

12/30
48.83 ± 1.6

393.72 ± 13.1s

30/30
48.57 ± 0.8

422.81 ± 10.31s

triangle-tire-9
30/30

52.93 ± 1.27
3.75 ± 0.08s

30/30
55.73 ± 1.26
503.52 ± 11.77s

30/30
55.33 ± 1.0

502.31 ± 9.53s

10/30
55.9 ± 1.33

468.68 ± 11.5s

30/30
55.6 ± 1.14

497.67 ± 13.17s

triangle-tire-10
30/30

59.0 ± 1.11
5.15 ± 0.11s

30/30
62.13 ± 0.93
569.71 ± 8.67s

30/30
60.93 ± 0.86
560.39 ± 8.54s

6/30
61.67 ± 3.49

569.18 ± 46.65s

30/30
61.8 ± 0.98

592.03 ± 9.64s

Table 4.5: Results for Triangle Tireworld
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4.3.6 Experiment Summary

We have described and analyzed the experimental results of our proposed methods
to combine UCT with ASNets in detail.

In the Stack Blocksworld experiment, we demonstrated that using an ASNet-
influenced action selection ingredients allows us to be robust to any misleading
information provided by an ASNet, as the influence of an ASNet is scaled down as
we apply what the network has suggested more often.

The Exploding Blocksworld experiment showed us how we can exploit the policy
learned by an ASNet to achieve better results than plain UCT even though this policy
was suboptimal. We argued that it is important to select the influence constant M
empirically based on the planning problem we are dealing with.

In the two-way CosaNostra Pizza experiment, we found that using ASNets as
a simulation function allowed us obtain more accurate state-value and action-value
estimates in the search tree, and hence increase the coverage. On the other hand,
UCT with Simple-ASNet or Ranked-ASNet action selection only lead to slightly
improved results over plain UCT. We argued that this was because of the misleading
estimates provided by the planning heuristic, and the state space which increases
exponentially with the number of toll booths.

The one-way CosaNostra Pizza experiment demonstrated how we can account for
changes in the environment by using search. We used the ASNet trained for two-way
CosaNostra Pizza that always opts to pay the toll operator, and showed that using
either ASNets as a simulation function or within UCB1 allowed us to achieve 100%
coverage with the optimal policy on most occasions.

Finally, the Triangle Tireworld experiment allowed us to explore the robustness
of combining ASNets and UCT when both already achieve good performance. We
demonstrated that by using ASNet in UCB1, we were able to decrease the number of
nodes expanded in the search tree as we do not need to apply actions that we know
are inherently bad. Moreover, we argued that it may not be worthwhile using ASNets
as a simulation function if we can only perform a very limited number of trials in the
time limit per planning step.

Thus, by combining ASNets with MCTS, we can learn what we have not learned,
improve suboptimal learning and be robust to changes in the environment and do-
main. As such, we get the best of both worlds.
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Chapter 5

Conclusion

In this final chapter of the report, we will summarize the contributions we have
presented, and the results we were able to achieve. We will then discuss promising
directions for future work.

5.1 Contributions

The main goal of this research project was to investigate how we could improve upon
the generalized policy of an ASNet by combining it with UCT. The key contributions
we made were:

1. An Ingredient-Based Framework for UCT.

We introduced an ingredient-based framework, extended from THTS, from
which we were able to generate different flavors of UCT including those that
exploited the generalized policy learned by an ASNet.

2. Using ASNets as the Simulation Function in UCT.

We introduced Stochastic ASNets and Maximum ASNets as simulation func-
tions which can help us obtain much more accurate state-value estimates than
those computed by a domain-independent planning heuristic.

We also discussed when it is worth and not worth using ASNets as a simulation
function, and confirmed these hypotheses in our experiments which showed
that UCT would converge to the optimal policy much faster if the knowledge
learned by an ASNet is informative.

3. Using ASNets in UCB1.

We introduced two new action selection ingredients, Simple-ASNet and Ranked-
ASNet, both extensions of UCB1. By introducing the new ASNet term, we can
force UCB1 to explore actions that an ASNet wants to exploit, as we ‘reward’
actions that have a higher probability in the policy learned by the ASNet.

Moreover, the new ASNet term allows us to decay the influence of an ASNet
over time as we apply the action it has suggested more often. This means
that UCT is robust to any misleading information provided by an ASNet, as

67
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we demonstrated in our Stack Blocksworld experiments. This is in contrast to
Stochastic and Maximum ASNets, where UCT may not be robust to any mis-
leading state-value estimates obtained through the ASNet-based simulations.

We also provided a sketch of a proof that shows UCT with Simple-ASNet or
Ranked-ASNet action selection converges to the optimal policy, and discussed
when we should use one over the other.

4. Empirical Evaluation.

We firstly gave a detailed description of the wide variety of domains we eval-
uated our algorithms on. We then analyzed the results of our experiments in
significant detail, and showed that combining UCT and ASNets allows us to
achieve the goals we described in Section 3.1, and hence obtain the best of both
worlds.

5.2 Future Work

5.2.1 Improved Algorithmic Efficiency

The code for our UCT framework could be optimized to reduce the computational
time required to perform a single trial. As a result, we would be able to complete
more trials in the limited time we give UCT at each planning step, and ideally achieve
better experimental results.

Another possible improvement would be to support running trials in parallel by
using an asynchronous variant of MCTS [Silver et al., 2017]. This would allow us to
distribute the workload across several CPUs and ultimately reduce the time required
to converge to an optimal solution.

Rollout-based UCT also benefits from a state-value cache, in which past state-value
estimates may be used to provide even more accurate estimates in future rollouts (also
known as simulations) [Kocsis and Szepesvári, 2006]. Hence, we may potentially
speed up the convergence of the state-value and action-value estimates to the true
optimal values.

5.2.2 Mixed Simulation Functions

We introduced the mixed simulation function as a potential way to overcome the
misleading state-value estimates obtained when using the Stochastic or Maximum
ASNet simulation functions. By mixing random simulations with ASNet-based sim-
ulations, we are able to introduce more noise which may help us overcome the bad
information provided by the policy learned by an ASNet.

We did not investigate mixed simulation functions because selecting a good level
of mixing between random simulations and ASNet-based simulations proved to be
very difficult. Ideally, this level of mixing should be learned or determined auto-
matically by judging how useful the knowledge learned by an ASNet is for solving
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our planning problem. It would be interesting to see how robust mixed simulation
functions are in comparison to ASNet-based action selection.

5.2.3 Interleaving Planning with Learning

Leapfrogging is a strategy that allows us iteratively improve the performance of a
learning algorithm by using the learning algorithm itself as a teacher.

Consider the Exploding Blocksworld domain. We could initially train an ASNet
using the procedure described in Section 2.4.3 on problems that are relatively easy.
Then, using the policy learned by the ASNet, we could run several rounds of UCT
with ASNets on slightly more difficult problems. Using the trial paths accumulated
from running UCT with ASNets, we then continue training the ASNet and hence
further improve the learned policy. We can repeat this process for many iterations,
and slowly increase the difficulty of the problems.

This would hopefully allow an ASNet to learn more useful knowledge about good
patterns of actions in Exploding Blocksworld, and successfully handle problems with
differing levels of difficulty.

Thus, UCT with ASNets effectively acts as a ‘teacher’ for training an ASNet.
It is clear that we can incrementally improve the policy learned by an ASNet by
interleaving planning with learning.

AlphaZero has successfully applied policy iteration through self-play to improve
the performance of its deep neural network [Silver et al., 2017]. Junyent et al. [2018]
use lookahead trees to learn compact policies for improving width-based planning.

5.3 Concluding Remarks

We have introduced several methods which can be used to combine generalized
policies with UCT. Although we test our proposed methods using the generalized
policies learned by an ASNet, our methods are applicable to any method of acquiring
a generalized policy such as ROLLER [de la Rosa et al., 2011] and [Yoon et al., 2002].

Nevertheless, we have shown that combining the generalized policy learned by
ASNets with UCT allows us to achieve the best of both worlds.
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