
Learning Heuristics for Planning
with Hypergraph Networks

William Shen

A thesis submitted for the degree of
Bachelor of Advanced Computing

(Research and Development, Honours)
The Australian National University

c© William Shen 2019



Except where otherwise indicated, this thesis is my own original work.

William Shen



To my parents.





Acknowledgments

Firstly, I would like to express my sincere gratitude towards my supervisors Felipe
Trevizan and Sylvie Thiébaux for their continuous support, guidance and patience
throughout my honours project. Their indispensable feedback and advice has helped
me appreciate and navigate the world of deep learning and planning, and consider
whether research is the right career path.

I am also grateful to the Australian National University for funding my studies
for the duration of my degree through the National University Scholarship, and to
the College of Engineering and Computer Science and my supervisors for providing
me with the opportunity to attend and present my work at AI conferences.

Finally, I wish to thank my family who have continuously supported my education
and encouraged me to pursue my passions and interests.

v





Abstract

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals.
State-of-the-art planners use forward-chaining state space search guided by a heuristic.
This method of search incrementally builds the search tree from the initial state until
a goal is reached, whilst the heuristic is used to guide the search algorithm to what
the heuristic identifies as promising parts of the search space.

Deep Learning harnesses the power of neural networks to automatically learn
powerful features and knowledge from experience. Although deep learning has
gained immense popularity in fields including computer vision and natural language
processing, there is still no consensus as to what deep learning architecture is best for
reasoning and decision making tasks such as planning. Recent work in deep learning
for planning is primarily concerned with learning which planner to apply for a given
problem (planner selection), or learning generalised policies which are functions that
select which action should be applied by an agent in a given state.

In contrast, this thesis focuses on how we may harness the power of deep learning
to learn heuristic functions which exploit the structure of planning problems. We
investigate how we may learn heuristics which generalise to problems of larger size
than the problems a neural network was trained on within a single domain (i.e., a
domain-dependent heuristic). Additionally, we explore the feasibility of learning
domain-independent heuristics which are able to generalise across domains.

Our work makes three key contributions. Our first contribution is Hypergraph
Networks (HGNs), our novel framework which generalises Graph Networks [Battaglia
et al., 2018] to hypergraphs. A hypergraph is a generalisation of a normal graph in
which a hyperedge may connect any number of vertices together. The HGN frame-
work may be used to design new hypergraph deep learning models, and inherently
supports combinatorial generalisation to hypergraphs with different numbers of ver-
tices and hyperedges. Our second contribution is STRIPS-HGNs, an instance of a
Hypergraph Network which is designed to learn heuristics by approximating short-
est paths over the hypergraph induced by the delete relaxation of a STRIPS problem.
STRIPS-HGNs use a powerful recurrent encode-process-decode architecture which al-
low them to incrementally propagate messages within the hypergraph in latent space.
Our third and final contribution is our detailed empirical evaluation, which rigorously
defines the Hypergraph Network configurations and training procedure we use in our
experiments. We train and evaluate our STRIPS-HGNs on a variety of domains and
show that they are able learn domain-dependent and domain-independent heuristics
which potentially outperform hmax, hadd and LM-cut.

vii



viii



Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Deep Learning for Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions and Research Goals . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Representations in Planning . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Planning as Heuristic Search . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Training a Neural Network . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Relational Inductive Biases . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Deep Learning on Graphs . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Learning for Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Hypergraph Networks 19
3.1 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Deep Learning on Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Hypergraph Neural Networks . . . . . . . . . . . . . . . . . . . . 21
3.2.2 HyperGCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Dynamic Hypergraph Neural Networks . . . . . . . . . . . . . . 25
3.2.4 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Hypergraph Networks (HGNs) . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Hypergraph Representation . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Hypergraph Network (HGN) Block . . . . . . . . . . . . . . . . . 29
3.3.3 Relational Inductive Biases and Combinatorial Generalisation . . 31
3.3.4 Con�gurable HGN Blocks and Existing Models as HGNs . . . . 32
3.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



x Contents

4 Learning Heuristics over Hypergraphs 39
4.1 Delete-Relaxation Heuristics as Shortest Paths over Hypergraphs . . . . 39

4.1.1 hmax and hadd as shortest paths over hypergraphs . . . . . . . . . 40
4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuristics . . . . . 42

4.2.1 STRIPS-HGN Hypergraph Representation . . . . . . . . . . . . . 42
4.2.2 STRIPS-HGN Architecture . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Combinatorial Generalisation . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Limitations of STRIPS-HGNs . . . . . . . . . . . . . . . . . . . . . 47

4.3 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Training Data Generation . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 STRIPS-HGN Weight Optimisation . . . . . . . . . . . . . . . . . 49

5 Empirical Evaluation 53
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Search Con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Hypergraph Network Con�guration . . . . . . . . . . . . . . . . . 54
5.1.3 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.4 Interpreting the Result Plots . . . . . . . . . . . . . . . . . . . . . 62

5.2 Domains and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.1 Blocksworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Matching Blocksworld . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Gripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.5 Ferry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.6 Zenotravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.7 n-puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.8 Sokoban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.9 Multi-Domain Experiments . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Learning Problem-Size Dependent Heuristics . . . . . . . . . . . 72
5.3.2 Learning Domain-Dependent Heuristics . . . . . . . . . . . . . . 75
5.3.3 Learning Domain-Independent Heuristics . . . . . . . . . . . . . 82
5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion 87
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Speeding up a STRIPS-HGN . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Improving the performance of STRIPS-HGNs . . . . . . . . . . . 90
6.2.3 Extending STRIPS-HGNs beyond STRIPS problems . . . . . . . . 92

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 101



Chapter 1

Introduction

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals
[Geffner and Bonet, 2013]. Deep learning is a sub-�eld within Arti�cial Intelligence
(AI) where deep neural networks are trained to learn incredibly rich and complex
functions from experience.

This thesis explores how deep learning may be used to learn both domain-dependent
and domain-independentheuristics for planning.

1.1 Planning

We are concerned with classical planning, where the environment is fully-observable
by the agent, and actions are deterministic [Geffner and Bonet, 2013]. More speci�-
cally, our work considers planning problems represented as STRIPS instances [Fikes
and Nilsson, 1971].

In a planning problem, an agent must reason about which actions it should take
from the initial state in order to achieve a certain set of goals. In doing so, the agent
must consider how certain actions may affect its future performance. The solution to
a planning problem is a sequence of actions which move the agent from the initial
state into a goal state. We call this solution a plan p = a0, . . . , an where each ai

represents the action applied at time step i.

State-of-the-art classical planning algorithms consider planning as forward-chaining
state space search guided by aheuristic. A forward-chaining state space search algo-
rithm incrementally builds a search tree from the initial state until it reaches a goal
state. A heuristic is a function which provides estimates of the cost to reach a goal
state from a given state. An informative heuristic usually helps a search algorithm
�nd a plan in a smaller number of node expansions, as it guides the search to more
promising parts of the search space.

Planning has proven to be an immensely important �eld within symbolic AI with
a variety of real-world applications. Classical planning has been used to control
industrial printers [Ruml et al., 2011], analyse network vulnerabilities [Boddy et al.,
2005], and even plan activities for rovers on Mars [Bresina et al., 2005].

1



2 Introduction

1.2 Deep Learning

The deep learning (DL) `revolution' refers to the unprecedented rate at which DL
models have become the de facto state-of-the-art algorithms in several �elds within
the past decade. For example, Convolutional Neural Networks (CNNs) have become
the standard in computer vision, as they are able to automatically learn �lters to apply
to local neighbourhoods across an entire image [Krizhevsky et al., 2012; LeCun et al.,
1998]. Recurrent Neural Networks, including Long Short-Term Memory [Hochreiter
and Schmidhuber, 1997], have become extremely powerful for Natural Language
Processing (NLP) as they are able to learn the dynamics of sequential input [Young
et al., 2018].

The majority of existing deep learning architectures are designed for tasks which
are inherently perception-based. Loosely speaking, perception refers to the ability of
a neural network to interpret and understand data in a similar way to humans, and
generate a corresponding transformation. Examples of perception tasks could include
labelling objects in an image [Krizhevsky et al., 2012], or automatically classifying the
sentiment of a sentence [Joulin et al., 2016].

1.3 Deep Learning for Planning

Despite the prevalence of DL models for perception-based problems, there is still no
consensus as to what DL architecture is best for reasoning and decision making tasks
such as planning. The proposed deep learning approaches for planning can be split
into three categories: planner selection, learning generalised policies, and learning
heuristics.

An example of deep learning applied to planner selection is Sievers et al. [2019],
who train Convolutional Neural Networks (CNNs) over graphical representations of
planning problems to determine which planner should be invoked for a planning task.
For learning generalised policies and heuristics, Groshev et al. [2018] use CNNs and
Graph Convolutional Networks and show that they are able to generalise to problems
they were not trained on. Notice that both of these approaches use standard deep
learning architectures applied for planning.

In contrast, Action Schema Networks [Toyer et al., 2019] de�ne a dedicated neural
network architecture which exploits the relational structure of planning problems
encoded in (P)PDDL [Younes and Littman, 2004] to learn generalised policies for
classical and probabilistic planning problems.

The motivation of this thesis is to use and extend existing deep learning architec-
tures to planning. Unlike existing approaches to learning for planning which rely
on hand-engineering features or encoding planning problems as images, we present
a domain-independent learning algorithm which automatically extracts knowledge
and features from a STRIPS problem. This knowledge is represented as ahypergrpah.



§1.4 Contributions and Research Goals 3

1.4 Contributions and Research Goals

The main objective of this thesis is to investigate how we may use deep learning
to learn heuristics by exploiting the structure of a planning problem. Our primary
goal is to propose a domain independent algorithm that can be used for learning
both domain-dependent and domain-independent heuristics. A domain-dependent
heuristic is able to generalise across problems in a given domain, while a domain-
independent heuristic is able to generalise across problems in multiple domains.

We learn heuristics instead of learning policies, i.e., actions to apply in a given
state, as a heuristic may be combined with a search algorithm that provides formal
guarantees. For example, A* search iscompletemeaning that it guarantees a plan
will be eventually found if one exists, regardless of the heuristic function used. This
means that learned heuristics can be used in critical applications, as a heuristic search
algorithm can easily correct for any de�ciencies or misleading information. Although
it is possible to combine a search algorithm with a neural network which learns a
probability distribution over actions [Shen et al., 2019], learning heuristics provides
a much more ef�cient and lighter layer of reasoning . This thesis makes three key
technical contributions:

1. Hypergraph Networks
We introduce Hypergraph Networks (HGNs), our generalisation of Graph Net-
works [Battaglia et al., 2018] to hypergraphs. A hypergraph is a generalisation
of a normal graph in which a hyperedge may connect any number of vertices
together. HGNs may be used to design new deep learning models which op-
erate over hypergraphs, and inherently support combinatorial optimisation by
applying per-hyperedge and per-vertex updates. Moreover, HGNs are designed
to be highly �exible, and can be used to represent existing hypergraph deep
learning models.

2. STRIPS-HGNs: a Hypergraph Network for Learning Heuristics
STRIPS-HGNs is an instance of a Hypergraph Network which is designed to
learn heuristics by approximating shortest paths over the hypergraph induced
by the delete relaxationof a STRIPS problem. A STRIPS-HGN uses a recurrent
encode-process-decodearchitecture to incrementally propagate the latent vertex
and hyperedge features by using message passing.

3. Extensive Empirical Evaluation
We train and evaluate our STRIPS-HGNs on a variety of domains. Our experi-
ments show that STRIPS-HGNs are able to learn knowledge from the features
and structure in a hypergraph which helps it generalise to problems much
larger than the problems a network was trained on. We also show that it is
possible for a STRIPS-HGN to generalise to problems from a domain it was
not trained on. In contrast to the majority of existing techniques for learning
heuristics in planning, STRIPS-HGNs learn heuristics from scratch and do not
use input features computed from domain-independent heuristics.



4 Introduction

1.5 Thesis Outline

The structure of the remainder of this thesis is as follows:

� Chapter 2 – Background and Related Work . The main objective of this chapter
is to provide the reader with the relevant background necessary to understand
both planning and deep learning. Firstly, we formalise classical planning, dis-
cuss heuristic search, and investigate how existing delete-relaxation heuristics
are computed. We then present the Multilayer perceptronand describe how it
may be trained. This is followed by a review of existing neural network models
which operate over standard graphs. We conclude Chapter 2 with an reasoned
study of existing work for machine learning and deep learning applied to plan-
ning.

� Chapter 3 – Hypergraph Networks . In this chapter, we formally de�ne what
a hypergraph is and then discuss existing deep learning models which op-
erate over hypergraphs. The main contribution in Chapter 3 is to introduce
Hypergraph Networks (HGNs), our novel framework which generalises Graph
Networks [Battaglia et al., 2018] to hypergraphs.

� Chapter 4 – Learning Heuristics over Hypergraphs . We �rstly discuss how
hmax and hadd may be considered as shortest path problems over hypergraphs.
The main objective of Chapter 4 is to introduce STRIPS-HGNs, our speci�c
instance of a Hypergraph Network which emulates message passingusing a re-
current encode-process-decodearchitecture. We discuss the inherent combinatorial
generalisation capabilities built into a STRIPS-HGN, and present an algorithm
for generating optimal training data and optimising the weights of the network.

� Chapter 5 – Empirical Evaluation . Chapter 5 �rstly describes our experimental
setup in detail, including particulars regarding the con�gurations of our Hyper-
graph Networks and our training procedure which aims to reduce noise. Next,
we introduce the domains we evaluate our STRIPS-HGNs on and the classes
of heuristics which we aim to learn. The remainder of Chapter 5 analyses and
explains the results of our experiments, which show that STRIPS-HGNs are able
to learn domain-dependent and domain-independent heuristics.

� Chapter 6 – Conclusion . We conclude this thesis by summarising our contribu-
tions, and discussing several promising directions for future work.



Chapter 2

Background and Related Work

This chapter aims to provide the reader with the relevant background necessary to
understand planning and deep learning. Section 2.1 �rstly formalises classical plan-
ning, then discusses heuristic search, and closes by presenting domain-independent
heuristics for planning.

Section 2.2 then provides a brief introduction to neural networks, how they are
trained, and a study of graph neural networks. Section 2.3 concludes this chapter
by discussing current machine learning and deep learning approaches applied to
planning.

2.1 Planning

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals
[Geffner and Bonet, 2013]. In less abstract terms, the agent's objective is to apply a
sequence of actions that moves it from the initial state to a goal state, ideally with
minimal cost.

In this thesis, we are mainly concerned with classical planning, where the envi-
ronment is fully-observable by the agent, and applying an action can only lead to one
outcome (i.e., actions are deterministic). This is in contrast to probabilistic planning,
where actions are stochastic and may lead to one of several outcomes which is sam-
pled according to a prede�ned state transition distributed. [Mausam and Kolobov,
2012].

2.1.1 Representations in Planning

Classical Planning

A classical planning problem may be described as the state model S = hS, s0, SG, A, f , ci
[Geffner and Bonet, 2013], where:

� S is the �nite set of states;

� s0 2 S is the initial state;

5



6 Background and Related Work

� SG � S is the non-empty set of goal states;

� A is the �nite set of actions and A(s) � A indicates the actions which are
applicable in a given state s 2 S;

� f (a, s) is the transition function which indicates the new state s0 = f (a, s) after
applying action a 2 A(s) in state s 2 S; and

� c(a, s) is cost of applying action a 2 A(s) in the state s.

A solution to a classical planning problem is a plan p = a0, . . . , an (i.e., a sequence
of actions) which generates a state sequences0, s1, . . . , sn+ 1 where sn+ 1 2 SG is a goal
state [Geffner and Bonet, 2013].

The cost of a plan is the sum of the costs of applying each action in the plan
å i2f 0,...,ng c(ai , si ). An optimal plan is a plan which has minimum cost. This thesis
considers classical planning problems where actions have a unit cost of c(a, s) = 1 for
all s 2 S and a 2 A(s). Subsequently, the cost of a plan is now given by its length.

STRIPS Representation

STRIPS is a language for representing classical planning problems which have boolean
state variables [Fikes and Nilsson, 1971]. Thus, a proposition in STRIPS is a fact which
must either be true or false. We de�ne a STRIPS problem as a tuple P = hF,O, I , G, ci
where:

� F is the set of propositions;

� O is the set of actions;

� I � F represents the initial state;

� G � F represents the set of goal states; and

� c is a function c(o) mapping an action o 2 O to a cost.

Each action o 2 O is de�ned as a triple hPre(o), Add(o), Del(o)i where Pre(o) repre-
sents the set of propositions which must be true in order for o to be applied, while
Add(o) and Del(o) represent the sets of propositions which action o make true and
false after applying o, respectively. We call Pre(o) the preconditions, Add(o) the ad-
ditive effects, and Del(o) the delete effects. It may be easily observed that STRIPS
encodes the state modelS = hS, s0, SG, A, f , ci of a classical planning problem.

We de�ne the delete relaxation of a STRIPS problem P as the STRIPS problem
P+ = hF,O0, I , G, ci , where O0 = fhPre(o), Add(o), Æi j o 2 Og. Evidently, delete
relaxation ignores the negative effects of each action in P.

It is important to note that classical planning is very dif�cult in terms of com-
putational complexity. Bylander [1994] showed that determining whether a STRIPS
problem has a plan is PSPACE-complete. In contrast, deciding whether a plan exists
for the delete relaxation is a polynomial time problem, and determining whether a
plan of length less than a given bound exists is NP-complete.



§2.1 Planning 7

Planning Domain Description Language (PDDL)

The Planning Domain De�nition Language (PDDL) is a standardised language which
may be used to represent STRIPS problems [Ghallab et al., 1998]. Problems speci�ed
in PDDL consist of two parts: the domainde�nition and a problemde�nition.

The domain de�nition contains the action schemas and predicates which de�ne a
`template' for instantiating a speci�c problem.

For example, car-at(?loc) is a predicate which describes whether a car is at the lo-
cation variable ?loc. Now, drive (?loc1,?loc2) is an action schema for driving between
the location variables ?loc1 and ?loc2, where both ?loc1 and ?loc2 are free variables.
This action schema requires car-at(?loc1) to be true (precondition), and generates a
new state in which car-at (?loc1) is false and car-at(?loc2) is true.

A problem de�nition speci�es the object names which replace the variables in the
domain de�nition, along with the description of the propositions in the initial state
and in the set of goal states. Grounding is then used to convert the domain de�nition
and problem de�nition into a STRIPS problem.

2.1.2 Planning as Heuristic Search

Having discussed the representation of planning problems, we now investigate heuris-
tic search, a strategy used by the majority of state-of-the-art-planners. Classical plan-
ning may be viewed as a path �nding problem over a directed graph. The vertices
(nodes) represent the states in a problem, while the edges represent actions. Search
algorithms for this view of classical planning are known as state-space planners. Since
the state space is exponential in the number of propositions in a planning problem
and cannot be generated upfront and entirely explored, state space planners exploit
the STRIPS representation of the problem to incrementally generate this directed
graph as more search is performed [Geffner and Bonet, 2013].

Heuristic search planners are a special case of state-space planners that rely on
forward-chaining search from the initial state to a goal state using a heuristic h,
typically computed from the STRIPS representation, and which provides an estimate
of the cost to reach a goal from a given state to guide the search to promising regions
of the state space [Bonet and Geffner, 2001]. Many state-of-the-art planners are based
on heuristic search algorithms – we review two heuristic search algorithms below.

A* Search

A* is a best-�rst search algorithm which at each search step, expands the node n
which maximises the heuristic value h(n) plus the cost of the path g(n) from the root
node for the initial state to n [Hart et al., 1968]. That is, A* selects the node that
minimises f (n) = g(n) + h(n) for expansion. The intuition behind A* is that it avoids
expanding paths that are already known to be expensive [Russell and Norvig, 2016].

A* is guaranteed to terminate and is complete, that is, it always �nds a plan given
one exists, no matter how uninformative the heuristic is. It can also be proven that if
the heuristic function h is admissible, then A* is guaranteed to return the optimal plan



8 Background and Related Work

[Hart et al., 1968]. An admissible heuristic is a heuristic which never overestimates
the true optimal cost from any state to a goal. We will formalise heuristics in Section
2.1.3.

Greedy Best-First Search (GBFS)

GBFS selects the node that minimisesf (n) = h(n) for expansion In GBFS, nodes are
selected for expansion based solely on their heuristic value – i.e., the cost to reach a
node n (g(n) in A*) is ignored when choosing a node to expand.

GBFS is a satis�cing search algorithm which usually �nds a plan much faster
than A*, given its greedy behaviour. However, these plans are not guaranteed to
be optimal. Because of this, we focus on using A* as the search algorithm in our
experiments.

2.1.3 Heuristics

Heuristic functions allow a heuristic search algorithm to focus its search on what
the heuristic believes to be promising parts of the state space. A heuristic function
h: S ! R provides an estimate of the cost to reach a goal state from a given states.
The optimal heuristic h� (s) is the heuristic that gives the optimal cost to reach a goal
state from s. A heuristic h is said to be admissible if it never overestimates the cost of
reaching a goal, i.e.,8s 2 S h(s) � h� (s). A heuristic that is not admissible is called
inadmissible.

As we discussed in Section 2.1.2, A* is only guaranteed to �nd the optimal plan
if used with an admissible heuristic. Despite this, a search algorithm often �nds a
solution much faster when used with an non-admissible rather than an admissible
heuristic. This may be attributed to the fact that inadmissible heuristics can reduce the
expanded search space by overestimating the cost of states it deems non-promising,
i.e. by setting h(s) � h� (s) it can avoid expanding s.

This thesis considers three baseline domain-independent heuristics which are
based on delete-relaxation: hmax (admissible), hadd (inadmissible) [Haslum and Geffner,
2000], and the Landmark-Cut heuristic (admissible) [Helmert and Domshlak, 2009].

Delete-Relaxation Heuristics

Delete-relaxation approximate the optimal heuristic value in a relaxed version of a
planning problem where the negative effects of each action are ignored. This means
that once a proposition becomes true, it will always stay true. Recall from Section
2.1.1 that the delete relaxation for a STRIPS problemP = hF,O, I , G, ci is the STRIPS
problem P+ = hF,O0, I , G, ci , where O0 = fhPre(o), Add(o), Æi j o 2 Og.

Since computing the optimal heuristic value for a state s in P+ is an NP-complete
problem, hmax approximates this value as the cost of achieving the most expensive
proposition in G starting from s. On the other hand, hadd approximates the optimal
heuristic value for a state s in P+ as the sum of the costs of achieving each proposition
in G independently of the others. hmax is admissible while hadd is inadmissible. We



§2.2 Deep Learning 9

detail the computation of hmax and hadd in Section 4.1.1, where we also discuss how
they may be viewed as approximating shortest paths over hypergraphs.

The LM-cut heuristic [Helmert and Domshlak, 2009] starts from the observation
that the optimal cost of solving P is the minimum-cost of any hitting set for a complete
set of disjunctive action landmarksfor P+ . A disjunctive action landmark for a planning
problem is a set of actions, at least one of which must be present in any plan solving
the problem. Therefore any plan must “hit" all the disjunctive action landmarks for
the problem. The optimal plan corresponds to selecting the cheapest set of actions that
hits them all. Since computing a minimum cost-hitting set is NP-complete and the
number of disjunctive action landmarks can be exponential in the problem size, LM-
cut approximates the solution to this problem in a way that guarantees admissibility.
It does so via a series ofhmax computations for increasingly relaxed problems starting
from P+ , and by incrementally �nding a useful and suf�cient set of landmarks that
correspond to cuts in a justi�cation graph. Although LM-cut may be more expensive
to compute than hmax, the heuristic estimates it provides are generally much more
informative.

Other Families of Heuristics

Although this thesis focuses on delete-relaxation heuristics, it is important to note
that there are other families of heuristics which are widely used in planning.

Pattern Database Heuristics (PDBs) use lookup tables to store optimal heuristic
values for an abstraction(pattern) of a problem [Haslum et al., 2007; Geffner and
Bonet, 2013]. This abstraction is obtained by projecting the state space of a problem
down to a subset of variables. PDBs then precompute the optimal values for these
abstractions, and use these precomputed values for different patterns to guide the
search towards states matching patterns with small costs.

Potential heuristics compute weighted linear combinations over a set of features
for a state [Pommerening et al., 2015]. These features may be automatically learned
from a small set of training instances by using mixed integer linear programming to
give a domain-dependent heuristic [Francès et al., 2019].

2.2 Deep Learning

Deep learning (DL) has proven to be immensely successful in several �elds including
computer vision and natural language processing, where DL models have become
the de facto state-of-the-art algorithm. This immense success may be attributed to
several factors including the increased power of Graphical Processing Units (GPUs)
and the wide-spread availability of big data.

This section aims to provide the reader with the necessary background for un-
derstanding the deep learning by �rstly introducing multilayer perceptrons and dis-
cussing how they may be trained with backpropagationand gradient descent. We then
discuss the concept of relational inductive biases, and conclude this section with a study
of existing neural networks which operate over graphs.



10 Background and Related Work

Figure 2.1: An example of a multilayer perceptron with three neurons in the input layer,
a single hidden layer with 4 neurons, and two neurons in the output layer. Each arrow
represents a weight in the MLP which needs to be learned. Diagram from https://commons.
wikimedia.org/wiki/File:Colored_neural_network.svg

2.2.1 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are the simplest form of feedforwardneural networks
which contain fully connected layers of neurons. An example of a MLP with one
hiddenlayer is depicted in Figure 2.1. A feedforward neural network is a network
in which information only moves forward in one direction. This is in contrast to
a recurrent neural network, which has lateral or feedback connections. A neuron
represents a function which performs a weighted summation on its input and then
applies an activation function.

The �rst layer in a MLP receives an input feature vector which is then fed through
one or more intermediate hiddenlayers to compute hidden representations for each
layer. The output of the �nal hidden layer is then fed through the output layer to get
the output of the MLP. A hidden layer performs weighted summations of the hidden
representations from the previous layer to compute a new hidden representation. This
hidden representation is also called the latent representation, as it encodes features
which are not easily interpretable or understood.

Throughout this section, we follow the notation de�ned in Toyer [2017]. In formal
terms, the hidden representation h( l ) which is output by the l-th layer in a MLP is
computed as:

h( l ) = f (W( l )h( l � 1) + b( l ) )

where h( l � 1) is the hidden representation of the previous layer (we de�ne h(0) to be
the input features), W( l ) are the weights and b( l ) are the biases of the neurons in
the l-th layer. We may aggregate the weights W( l ) and biasesb( l ) across theL layers
l 2 f 1,. . . , Lg in a MLP into a single variable q, which we call the weights of a MLP.



§2.2 Deep Learning 11

f is an activation function which applies a non-linearity to the weighted summation,
such as the sigmoid function or the Recti�ed Linear Unit (ReLU) [Nair and Hinton,
2010].

As we increase the number of hidden layers in a MLP, the neural network is
progressively able to extract more complex features from the input. However, a larger
network leads to an increased number of weights and biases which we would need
to learn, and would increase the computation cost of training and evaluating a MLP.

2.2.2 Training a Neural Network

This thesis is only concerned with supervised learning, where a neural network
learns from a labelled training dataset T = f (x1, y1), . . . , (xn, yn)g, where each (xi , yi )
represents the (input features, desired outputs). The objective of a MLP is to optimise
its weights q to minimise the total loss L (T ) (Equation 2.1). The loss function `
measures the deviation of the predictions provided by a neural network when we
feed it with the input features f x1, . . . , xng, to the targets features f y1, . . . , yng. We
de�ne the total loss as

L (T ) = å
xi ,yi 2T

` ( ŷi , yi ) (2.1)

where ŷi = MLP(xi ) is the prediction made by the MLP for the input feature xi . In
order to train a neural network using backpropagationand gradient descent, the loss
function ` must be differentiable. This thesis only considers the mean squared error
(MSE) loss function, which is de�ned as ` MSE = j ŷi � yi j2.

Backpropagation and Gradient Descent

The backpropagation algorithm exploits the chain rule to update the weights of a
neural network in a backwards manner, starting from the output layer and ending
at the input layer of a network. We refer the reader to [Goodfellow et al., 2016] for a
detailed discussion on backpropagation.

Given a differentiable loss function ` , we can compute the gradient dL q(T )
dq of the

total loss with respect to the weights q of the network. The weights q are then updated
in the direction which minimises L (T ) according to this gradient. This weight update
approach is called batch gradient descent. We discuss other forms of gradient descent
in Section 4.3.

We repeat this weight update procedure for several epochsuntil the neural network
reaches a satisfactory total lossL (T ). An epoch refers to a single pass over all the
samples in the training dataset T .

2.2.3 Relational Inductive Biases

Inductive biases refer to the assumptions that a learning algorithm makes which
allow it to generalise beyond the �nite set of data it was trained on.



12 Background and Related Work

Component Entities Relations Rel. inductive bias Invariance

MLPs Neurons All-to-all Weak -

Convolutional Grid elements Local Locality Spatial translation

Recurrent Timesteps Sequential Sequentiality Time translation

Graph network Vertices Edges Arbitrary Vertex, edge permutations

Table 2.1: Relational inductive biases in standard deep learning components. Modi�ed from
Table 1 in [Battaglia et al., 2018].

Relational inductive biases extend this notion and refer to the inductive biases
which impose constraints on the relationships and interactions of the entities in a
learning algorithm [Battaglia et al., 2018]. A learning algorithm has a strong rela-
tional inductive bias if it imposes little to no constraints on these relationships and
interactions. Table 2.1 summarises the relational inductive biases in standard deep
learning components; we refer the reader to [Battaglia et al., 2018] for a more detailed
discussion.

The relational inductive biases of MLPs are very weak, as they do not impose any
constraints on the interactions between neurons in layer l and neurons in layer l + 1
as they are fully connected. This means that all neurons in a fully connected layer
may be used to determine the output of the layer. On the other hand, Convolutional
Neural Networks (CNNs) have strong relational inductive biases as they impose
locality and translation invarianceby applying the same �lters in local neighbourhoods
within grid data (e.g., images) [Krizhevsky et al., 2012; LeCun et al., 1998].

Graph Networks (GNs) [Battaglia et al., 2018], which we brie�y describe in Section
2.2.4, impose much stronger relational inductive biases than CNNs. This is because
GNs operate over graphs which represent arbitrary relational structures, while CNNs
are only able to operate over grid-based structures.

2.2.4 Deep Learning on Graphs

There is an increasing interest in applications of deep learning to non-Euclidean
domains and problems which may inherently be formalised as a graph. However,
the complexity of graph-based data means that it is dif�cult for learning algorithms
to capture the complex interdependence of entities within a graph. This subsection
provides a brief study of current state-of-the-art spectraland spatial-based graph neural
networks (GNNs). For more insights into GNNs, we refer the reader to the following
survey [Wu et al., 2019].

Spectral-based Approaches

Spectral-based graph neural networks de�ne convolutions based on spectral graph
theory. We will not derive the formulas we use here, as the derivations require
extensive knowledge on graph signal processing. We refer the reader to [Wu et al.,
2019] for the formal derivations.



§2.2 Deep Learning 13

The graph Laplacian is a mathematical representation of an undirected graph
which has several applications in spectral graph theory, including the ability to con-
struct low dimensional embeddings for vertices. The graph convolution of an input
graph signal x with a �lter g 2 RN is de�ned as x � G gq [Wu et al., 2019], where � G

represents the convolution on the graph G. The objective of a spectral GNN is to
de�ne a �lter gq.

Bruna et al. [2013] de�ne gq as a set of learnable parameters with multiple chan-
nels which uses the eigen decomposition of the normalised graph Laplacian. Their
approach cannot be applied to graphs with different structures as the eigenvectors
and eigenvalues vary signi�cantly even with small perturbations to a graph. More-
over, computing the eigen decomposition is cubic in the number of vertices n in the
graph, i.e., O(n3), meaning that their approach is unscalable to larger graphs.

Defferrard et al. [2016] approximate gq by using Chebyshev polynomialsand the
graph Laplacian. Their approach is linear in the number of edges m, i.e., O(m),
and provides a signi�cant improvement over the O(n3) computational complexity of
[Bruna et al., 2013].

Spectral-based Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017]
further approximate gq with the �rst-order approximation of Chebyshev polynomials
and a renormalisation trick. This results in the following layer-wise propagation rule
for the l-th GCN layer:

X( l+ 1) = s
�

D̃ � 1/2 Ã D̃ � 1/2 X( l )W ( l )
�

where Ã = A + I N is the adjacency matrix of the undirected graph with self-
connections, I N is the identity matrix of size N, D̃ [i , i ] = å j Ã [i , j] is the square

degree containing the degrees of each vertex in Ã , W ( l ) is the trainable weight matrix,
and s is an activation function. X( l ) is the matrix of the hidden representations of the
vertices at the l-th layer. D̃ � 1/2 Ã D̃ � 1/2 is called the renormalised adjacency matrix.
We refer the reader to [Kipf and Welling, 2017] for the formal derivation.

Although GCNs may be interpreted as spatial-based models because they propa-
gate messages along the edges in a graph, they still rely on an approximation of the
graph Laplacian. We consider all models which utilise the graph Laplacian in any
way, shape, or form as spectral-based. This allows us to maintain a strong distinc-
tion with spatial-based graph neural networks which explicitly perform convolutions
using neighbouring vertices.

Spatial-based Approaches

Spatial-based graph neural networks formulate convolutions based on the neighbour-
hood around each vertex. We discuss Message Passing Neural Networks [Gilmer
et al., 2017] and Graph Networks [Battaglia et al., 2018], two frameworks which
generalise several existing GNNs.

Message Passing Neural Networks (MPNNs) is a uni�ed framework which gen-
eralises both spatial-based and spectral-based GNNs [Gilmer et al., 2017]. MPNNs



14 Background and Related Work

are designed primarily to express spatial-based GNNs. Let G be an undirected graph
with vertex features xv and edge features evw. MPNNs consist of two phases: a mes-
sage passing phase and a readout phase. The message passing phase is de�ned in
terms of a shared message function M t and a shared vertex update function Ut . In
each message passing step, the new latent representationht+ 1

v for each vertex in the
graph is computed based on the messagemt+ 1

v :

mt+ 1
v = å

w2 N (v)

M t (ht
v, ht

w, evw)

ht+ 1
v = Ut (ht

v, mt+ 1
v )

where N (v) denotes the neighbouring vertices of v in the graph G. Evidently, it is
possible to repeatedly apply the message passing phase to continuously update the
latent representations of the vertices in the graph. In every step of message passing,
each vertex sends a `signal' to its neighbouring vertices. Subsequently, repeated
applications of message passing allow information to travel long distances in the
graph.

The readout phase of MPNNs computes a graph-level output ŷ using a readout
function R which accepts the latent features of the vertices hT

v after the last message
passing step at time step T as input:

ŷ = R(f hT
v j v 2 Gg).

The message function M t , vertex update function U t , and readout function R are
all functions which are learned by a MPNN. That is, each function could be imple-
mented as any learning model such as a MLP. Gilmer et al. [2017] show that MPNNs
subsume notable GNNs including Convolutional Networks for Learning Molecular
Fingerprints [Duvenaud et al., 2015], Gated Graph Neural Networks [Li et al., 2015],
and Kipf and Welling [2017]'s spectral-based Graph Convolutional Networks.

Graph Networks (GNs) is a framework which subsumes an increased family of
GNNs including MPNNs. GNs use �exible graph-to-graph modules which perform
computations over the features and structures within a graph. These modules, which
are called GN blocks, may be composed sequentially and repeatedly applied. Chapter
3 will present Hypergraph Networks, our extension of Graph Networks to hypergraphs,
in detail.

Comparison between Spectral and Spatial GNNs

We break down the differences between spectral and spatial GNNs into two aspects:
generality and �exibility [Wu et al., 2019].

Spectral GNNs generally assume that the graph is �xed, as the eigenvectors and
eigenvalues of the normalised graph Laplacian may vary substantially across graphs.
Although Kipf and Welling [2017]'s GCNs are able to generalise across graphs because
they use localised �rst-order approximations of spectral graph convolutions, their
generalisation capability is still limited in comparison to the capability of spatial



§2.3 Learning for Planning 15

GNNs. Spatial GNNs are naturally able to generalise to graphs of varying structure
and with different numbers of vertices and edges. This is because they perform
convolutions on each vertex in a graph based on a vertex's local neighbourhood.

Directed graphs must be converted to undirected graphs before they may be
applied to a spectral GNN, as the graph Laplacian is not well-de�ned for directed
graphs. Moreover, spectral-based GNNs are only able to perform convolutions based
on vertex-level features and do not support edge-level or global features as input.
This is in contrast to spatial based GNNs including Graph Networks, which are able
to support edge-level, vertex-level and global input features.

As we have demonstrated, spectral-based GNNs have signi�cant limitations. For
this reason, this thesis focuses on spatial-based approaches. Chapter 3 will introduce
Hypergraph Networks, our generalisation of Graph Networks to hypergraphs.

2.3 Learning for Planning

Machine learning (ML) and deep learning (DL) approaches to planning have recently
seen a signi�cant increase in interest, given the ever-increasing ability of learning
algorithms to automatically learn complex relationships and features from experience.
Current ML and DL approaches for planning can be split into three major categories:
planner selection, learning generalised policies, and learning heuristics.

Planner Selection

Planner selection involves selecting which planner out of a portfolio of planners
should be applied for a given task. This is motivated by the fact that the performance
of planners may vary across different tasks. Sievers et al. [2019] introduce Del�, an
online portfolio-based planner which �rstly converts a planning task into an image
by using the binary image representation of the adjacency matrix given by the abstract
structure graphof the task, and then train Convolutional Neural Networks to learn
which planner to invoke. Similarly, Ma et al. [2019] use Graph Neural Networks
directly on the problem description graphand the abstract structure graphof a task for
online planner selection and adaptive scheduling. We do not describe planner selection
in detail as it is not particularly relevant for this thesis.

Learning Generalised Policies

We consider a stochastic policy as a function which returns a probability distribution
over the actions an agent may apply in a given state. A generalised policy is a
stochastic policy which may be applied across all problems in a given domain.

Groshev et al. [2018] use hand-crafted translators to convert states in a domain
into a representation which may be used to train a Convolutional Neural Network
(CNN) or Graph Convolutional Network (GCN) for learning generalised policies and
heuristics. For example, states in Sokoban are converted into their corresponding
grid-based image representation which contains the layout of the warehouse, location



16 Background and Related Work

of the boxes, initial state, goal state, etc. (see Figure 5.9 for an example) before they
are passed to a deep CNN. Hence, the major limitation of Groshev et al. [2018]'s
approach is that each domain requires hand-engineered translators.

Action Schema Networks (ASNets) [Toyer et al., 2019] de�ne a dedicated neural
network architecture which exploits the relational structure of planning problems
encoded in (P)PDDL1 [Younes and Littman, 2004] to learn generalised policies for
deterministic and probabilistic planning. In contrast to [Groshev et al., 2018], ASNets
do not require any hand-crafted input features or translators as the network design
is automatically inferred from the PPDDL problem [Toyer et al., 2019]. An ASNet
is composed of alternating action layers and proposition layers which are sparsely
connected according to the structure of the action schemas de�ned in a PPDDL
problem. One signi�cant advantage of ASNets is its sophisticated weight sharing
scheme which allows a network to theoretically generalise to problems of any size in
a given domain. A disadvantage of ASNets is its �xed receptive �eld which limits its
capability to support long chains of reasoning.

Issakkimuthu et al. [2018] de�ned custom neural network architectures which are
able to learn policies for individual planning problems de�ned in RDDL [Sanner,
2011]. On the other hand, ToRPIDo [Bajpai et al., 2018] andTra PSNet [Garg et al.,
2019] learn generalised policies which are able to transfer between RDDL problems,
albeit with the assumptions of unary actions and binary non-�uents they impose
on the problems. In contrast to ASNets which use a dedicated neural network ar-
chitecture, ToRPIDo and Tra PSNet use standard graph convolutional networks and
graph attention networks [Veli�cković et al., 2018] to encode states in latent space,
respectively.

Learning Heuristics

Although a copious amount of research exists for learning heuristics with deep learn-
ing for classic NP-hard combinatorial optimisation problems such as the Travelling
Salesman and Knapsack problem [Khalil et al., 2017; Li et al., 2018], it is unclear
how we may apply these techniques to exploit the relational structure of a planning
problem. Nevertheless, there has been extensive research on how we may learn heuris-
tics for planning using standard machine learning techniques including multilayer
perceptrons (MLPs) and bootstrap-learning.

Yoon et al. [2008] learn linear heuristic functions which are weighted linear com-
binations of features derived from a relaxed plan. These features may include the
length of the relaxed plan and information regarding the delete effects which were
ignored by the relaxed plan. The heuristic functions which are learned by [Yoon
et al., 2008] are domain-dependent, as they learn knowledge speci�c to the planning
domain they were trained on.

Arfaee et al. [2010] and Geissmann [2015] use bootstrap-learning to iteratively
learn a stronger heuristic function starting from a weak heuristic function. Their
approach relies on a bootstrapping technique which adaptively updates the training

1PPDDL is an extension of PDDL which supports probabilistic planning.



§2.3 Learning for Planning 17

data depending on whether the heuristic at a given iteration is able to successfully
solve the training tasks. If the heuristic is able to solve a training task, the resulting
state sequences for the plan are added to the training set. If a heuristic is unable
to solve a training task, then states encountered on a random walk from the goal
state are added to the training set – these represent states which are hopefully easier
to solve. The updated training set is then used to train a stronger heuristic at the
next iteration. Both works used a shallow MLP with a single hidden layer to learn a
heuristic function over the training data. Geissmann [2015] shows that it is possible to
learn a domain-independent heuristic for classical planning using bootstrap-learning.

Garrett et al. [2016] use Support Vector Machines (SVMs), a kernel-based machine
learning algorithm [Boser et al., 1992], for learning domain-dependent heuristics
which accurately ranks states as opposed to estimating the optimal heuristic h� . The
input features to a SVM for each pair of actions (a1, a2) include: the set intersection
of the preconditions and effects for a1 and a2, the temporal orderingof a1 and a2 in an
approximateplan, and features derived from an existing domain-independent heuristic
including the heuristic value. One limitation of the heuristics learned by [Garrett et al.,
2016] is that they can only be applied to search algorithms which operate on ranks,
such as greedy best-�rst search. In contrast, the heuristics we learn may be applied
to any search algorithm which uses the heuristic values, such as A*.

Gomoluch et al. [2017] learn domain-independent planning heuristics by training
a MLP on features derived from hFF [Hoffmann, 2001], including the number of
operators in the FF relaxed plan, and the heuristic value. This can be considered as
learning an improvement on hFF. In contrast to [Garrett et al., 2016; Gomoluch et al.,
2017; Yoon et al., 2008], our neural networks learn heuristics from scratch and do not
use input features computed from existing domain-independent heuristics.



18 Background and Related Work



Chapter 3

Hypergraph Networks

In Section 2.2.3, we argued for the importance of a neural network architecture with a
strong relational inductive bias, as it allows a network to exploit the inherent structure
of the problem at hand. For example, Convolutional Neural Networks impose locality
and translation invariance – biases which are effective for processing images as there
is high covariance within the pixels in a local neighbourhood of an image.

Although there are existing neural network architectures designed for learning
over hypergraphs, including Hypergraph Neural Networks [Feng et al., 2019] and
HyperGCN [Yadati et al., 2018], deep learning on hypergraphs is still in its infancy
in comparison to learning on standard graphs. Moreover, existing techniques rely
predominantly on spectralrather than spatialconvolutions.

In this chapter, we will rigorously de�ne hypergraphs in Section 3.1 and then
explore existing deep learning models in Section 3.2. We �nish this chapter by
presenting Hypergraph Networks (Section 3.3), our novel framework based on Graph
Networks [Battaglia et al., 2018] which generalises and extends existing spectral-based
and spatial-based hypergraph models. As we will discuss, the Hypergraph Networks
framework exploits the inherent relational structure of a hypergraph and provides a
powerful toolkit for constructing new learning models.

3.1 Hypergraphs

A hypergraph is a generalisation of a normal graph in which a hyperedge may connect
any number of vertices together. A undirected hypergraph may be formulated as a
pair G = ( V, E), where V = f v1, v2, . . . , vNv g is the set of vertices of cardinality Nv

(vertex set), and E = f e1, e2, . . . , eNeg is the set of hyperedges of cardinality Ne with
ei � V (hyperedge set) [Gallo et al., 1993].

A hyperedge e is de�ned as the set of vertices which the hyperedge contains.
Clearly, when jei j = 2 for i 2 f 1, . . . ,Neg, then H is a standard undirected graph.

The incidence matrix H of a hypergraph is a Nv � Ne matrix where for i 2
f 1, . . . ,Nvg and j 2 f 1, . . . ,Neg:

H [i , j] =

(
1, if vi 2 ej

0, otherwise.
(3.1)

19



20 Hypergraph Networks

Figure 3.1: Example of a directed hyperedge e= ( T, H ) where Tail(e) = T = f v1, v2, v3g and
Head(e) = H = f v4, v5g.

Let h(v, e) represent the entry in the incidence matrix H for vertex v and hyper-
edge e. A weighted undirected hypergraph is de�ned as a triple G = ( V, E, w), where
each hyperedge e2 E is associated with a weight w(e) 2 R+ .

Directed Hypergraphs

A directed hypergraph is a hypergraph G = ( V, E) with directed hyperedges. A
directed hyperedge e 2 E is a pair (T, H ) where T and H are vertex sets. Let
Tail(e) = T � V be the tail, and Head(e) = H � V be the head of e, respectively.
An example of a directed hyperedge is shown in Figure 3.1. The incidence matrix
H of a directed hypergraph is a Nv � Ne matrix where for i 2 f 1,. . . , Nvg and
j 2 f 1, . . . ,Neg:

H [i , j] =

8
>><

>>:

� 1, if vi 2 Tail(ej )

1, if vi 2 Head(ej )

0, otherwise.

(3.2)

Figure 3.2 depicts an example of a directed hypergraph and its corresponding
incidence matrix. A weighted directed hypergraph is a triple G = ( V, E, w), where
each hyperedge e2 E is directed and associated with a weight w(e) 2 R+ .

3.2 Deep Learning on Hypergraphs

Research on deep learning for hypergraphs is still in its infancy, despite the in�ux
of new models for regular graphs. Here, we will present and compare the current
state-of-the-art hypergraph learning algorithms. We will discuss these models in a
fair amount of detail as our framework, Hypergraph Networks, may be used to de�ne
all of them.



§3.2 Deep Learning on Hypergraphs 21

Figure 3.2: Example of a directed hypergraph and its corresponding incidence matrix [Gallo
et al., 1993]. Note that the hyperedge E5 has an empty head.

3.2.1 Hypergraph Neural Networks

Hypergraph Neural Networks (HGNNs) [Feng et al., 2019] is the �rst work to de�ne
spectralhypergraph convolutions by approximating hypergraph Laplacians in terms
of �rst-order Chebyshev polynomials. The hypergraph Laplacian is a generalisation
of the graph Laplacian discussed in Section 2.2.4. Spectral convolutions rely on
the formulation of the graph in the spectral (Fourier) domain. HGNNs are able to
learn the higher-order relationships between the entities in the data, and were shown
to outperform existing state-of-the-art methods that do not exploit the structure of
hypergraphs.

Formulation

Given an undirected weighted hypergraph G = ( V, E, w), we de�ne W 2 RNe� Ne

and D e 2 RNe� Ne
to be the diagonal matrices with each diagonal entry contain-

ing the weight w(ei ) and degree d(ei ) = å v2V h(v, ei ) for the hyperedge ei for i 2
f 1,. . . , Nvg, respectively. Furthermore, D v 2 RNv � Nv

is de�ned as the diagonal
matrix representing the degree of each vertex with each diagonal entry containing
d(vj ) = å e2E w(e)h(vj , e) for j 2 f 1, . . . ,Nvg.

We refer the reader to [Feng et al., 2019] for full details on how the hyperedge
convolution is derived in terms of Fourier transforms, Chebyshev polynomials, and
relevant approximations and simpli�cations. A full treatment of this derivation is not
presented in this thesis as the derivation is based heavily on spectral graph theory. A
hyperedge convolutional layer in a HGNN is de�ned as:

X( l+ 1) = s(D � 1/2
v HWD � 1

e H TD � 1/2
v X( l )Q ( l ) ) (3.3)

where X( l ) 2 RNv � C( l ) is the signal (i.e., features) of the hypergraph at the l-th layer,



22 Hypergraph Networks

Figure 3.3: Illustration of a single hyperedge convolutional layer from Figure 4 of [Feng et al.,
2019].

Q ( l ) 2 RC( l ) � C( l+ 1) are the weights to be learned, X( l+ 1) 2 RNv � C( l+ 1) is the output of
the hyperedge convolutional layer, and s is a non-linearity activation function (e.g.
sigmoid, ReLU [Nair and Hinton, 2010]). C( l ) and C( l+ 1) represents the number of
channels (i.e., dimensionality) for the vertex features in the l-th and ( l + 1)-th layer,
respectively.

L = D � 1/2
v HWD � 1

e H TD � 1/2
v is called the normalised incidence matrix, as it com-

bines information about the degree of each vertex, the degree and weight of each
hyperedge, and the structure of the hypergraph. If we look closely at the matrix
multiplication between L and X in Equation 3.3, we can observe that a new feature
for each vertex v is computed as a weighted aggregation of its neighbouring vertices
(as determined by the hyperedges that contain v). We refer the reader to Section
10.1 in the Appendix of [Gilmer et al., 2017] for a formal derivation of this reasoning
applied to a Kipf and Welling [2017]'s standard Graph Convolutional Network.

It is important to note that this formulation of a hyperedge convolutional layer is
only de�ned in terms of undirected hypergraphs. However, our experiments showed
that using HGNNs with directed hypergraphs converted to undirected hypergraphs
yielded admirable results.

The input to the �rst hyperedge convolutional layer are the initial vertex features
X(1) 2 RNv � d, where d is the initial dimensionality for each vertex feature. Hence, a
disadvantage of HGNNs is that they do not support hyperedge features as explicit
input to the network. However, a single HGNN layer performs vertex-edge-vertex
transforms which subsequently computes intermediate hidden hyperedge represen-
tations (Figure 3.3).

[Bai et al., 2019] extend HGNNs by introducing a hypergraph attention module
which enhances the representational capability of a network. The attention mech-
anism is used to directly update the incidence matrix, such that each entry now
measures the degree of connectivity between a vertex and a hyperedge rather than a
binary value representing whether a vertex is in a hyperedge or not. Despite being
more expensive to train, the hypergraph attention module can be used to a “learn a



§3.2 Deep Learning on Hypergraphs 23

dynamic connection of hyperedges" which can lead to richer feature embeddings.

Pitfalls

A hyperedge convolutional layer returns vertex-level outputs, and hence cannot be
used to make edge-level predictions. However, the vertex-level outputs can be aggre-
gated to produce a single hypergraph-level output (e.g., by doing a summation of the
node features output by the last layer of the HGNN). That being said, HGNNs are
primarily used to solve semi-supervised node classi�cation problems.

As we have previously discussed in Section 2.2.4, the major disadvantage of
spectral-based graph neural networks is that they usually generalise poorly to hyper-
graphs with a different number of vertices and hyperedges to the ones the network
was trained on. Moreover, spectral-based approaches are inef�cient as the convolu-
tions are performed over the whole hypergraph rather than a batch of vertices [Wu
et al., 2019].

Moreover, hyperedge convolutional layers in a HGNN rely on a �rst-order Cheby-
shev polynomial approximation of the spectral graph convolution, where the eigen-
vectors of the hypergraph Laplacian essentially act as the Fourier bases and the
eigenvalues act as frequencies [Feng et al., 2019]. Not surprisingly, the eigenvectors
and eigenvalues of the hypergraph Laplacian can vary signi�cantly due to pertur-
bations to the hypergraph structure. Hence, we would expect the generalisation
performance of a HGNN to be limited.

3.2.2 HyperGCN

HyperGCN [Yadati et al., 2018] is a spectral-based approach for learning over hyper-
graphs that relies on decomposing the hypergraph into a standard graph. It does this
by “approximating each hyperedge by a set of pairwise edges connecting the vertices
of the hyperedge", and then applying a conventional spectral-based Graph Convolu-
tional Network (GCN) [Kipf and Welling, 2017]. As with HGNNs, HyperGCNs are
only de�ned for undirected hypergraphs.

Formulation

HyperGCNs �rst construct a standard weighted graph GS on the vertex set V of a
weighted undirected hypergraph (V, E, w) by using Chan et al. [2018]'s de�nition of
the Hypergraph Laplacian. The hypergraph Laplacian is a generalisation of the graph
laplacian introduced in Section 2.2.4.

In a HyperGCN, GS is constructed by adding standard edges f ie, jeg � e: e 2 E
with weights w(f ie, jeg) = w(e). Recall a hyperedgeeis de�ned as a vertex set. Hence,
a HyperGCN initially decomposes the hypergraph into a standard graph, where each
vertex in a hyperedge e is connected to the other vertices in e through standard edges.

Then, for each hyperedge e at a given epoch t , HyperGCN selects the single
representative standard edge ( ie, je) where the hidden feature representations of ie
and je differ the most. This procedure is called the hypergraph Laplacian. Recall that



24 Hypergraph Networks

Figure 3.4: Illustration of a single convolution on a vertex v using HyperGCN for epoch t
(Figure 1 in [Yadati et al., 2018]). Q is a trainable weight matrix, A is the normalised adjacency
matrix of the standard graph obtained from decomposing the hypergraph, and hi and hj are
the hidden representations of the vertices ie and i j , respectively. For each hyperedge e at a
given epoch t , HyperGCN selects the standard edge where the hidden representations of
the vertices differ the most, as de�ned by the equation given in the `hypergraph Laplacian
operator' step. HyperGCN then applies a standard Graph Convolutional layer over the
resulting graph.

an epoch refers to a single pass of the data set and the associated weight updates to
the HyperGCN. Hence, the representative edges which are selected by a HyperGCN
may vary across epochs as the hidden representations of the vertices evolve over time.

Now, HyperGCN applies a standard GCN over the resulting graph. These steps
are depicted in Figure 3.4. Evidently, the selected edge may not be representative
of the hyperedge which it was constructed from, and hence we may expect the
representational capability of a HyperGCN to be limited in comparison to that of
HGNNs.

Yadati et al. [2018] address this issue by introducing "mediators", where for the sin-
gle representative edge ( ie, je) for each hyperedge e, new edges f ( ie, k) : k 2 es.t. k 6=
ie ^ k 6= jeg and f ( je, k) : k 2 es.t. k 6= ie ^ k 6= jeg are connected and added to the
resulting graph to be processed by the GCN. Essentially, each representative edge
( ie, je) is now conditioned on the other vertices in the hyperedge e.

Comparison to HGNNs and Pitfalls

In comparison to HGNNs, which approximate each hyperedge with a clique and
hence require a polynomial number of edges, HyperGCNs only require a linear
number of edges as they select one representative standard edge for each hyperedge.
This leads to faster training time, at the potential loss of representational capability.
However, Yadati et al. [2018] found that HyperGCNs outperformed HGNNs for semi-
supervised node classi�cation and combinatorial optimisation, most likely due to the
removal of noisy hyperedges as a result of this linear approximation.

HyperGCNs and HGNNs both suffer from the issue that their convolutions are
formulated in terms of the spectral-domain of the graph. This means that they usually
generalise poorly to hypergraphs with a different number of vertices and hyperedges
to the ones they were trained on, for the reasons aforementioned at the end of Section



§3.2 Deep Learning on Hypergraphs 25

3.2.1. Moreover, both techniques are only de�ned for undirected hypergraphs, and
cannot be used to make edge-level predictions as their layers only give vertex-level
outputs.

Despite this, Yadati et al. [2018] found that HyperGCNs were able to generalise
to different sized hypergraphs for the densest k-subhypergraph problem, an NP-hard
problem. Our experiments found that spatial-based hypergraph networks are able to
generalise far better than spectral-based hypergraph networks in terms of planning
performance.

3.2.3 Dynamic Hypergraph Neural Networks

To the best of our knowledge, Dynamic Hypergraph Neural Networks (DHGNN)
[Jiang et al., 2019] is the �rst hypergraph deep learning framework which utilises
spatial convolutions. A DHGNN is composed of stacked layers, where each layer
consists of a dynamic hypergraph construction (DHG) module and hypergraph con-
volution (HGC) module. DHGNNs are only de�ned for undirected hypergraphs.
However, unlike HGNNs and HyperGCNs, it is possible to extend DHGNNs to
directed hypergraphs.

In contrast to a spectral convolution which is de�ned in the spectral domain of
the entire hypergraph, a spatial convolution is de�ned in terms of the local neigh-
bourhoods of vertices and hyperedges (i.e., batches of vertices and hyperedges). This
allows a DHGNN to generalise to hypergraphs with a different number of vertices
and hyperedges to the hypergraph(s) it was trained on.

The DHGNN framework is most similar to the Hypergraph Networks framework
we will introduce in Section 3.3, than to HGNNs and HyperGCNs. Next, we will
explain the formulation of DHGNNs in more depth. It is important to note that
DHGNN was published in parallel to the development of this thesis.

Dynamic Hypergraph Construction (DHG) Module

The DHG module allows the undirected hypergraph structure to be dynamically
re�ned as the feature embeddings of the vertices evolve over time, as the initial hyper-
graph may not have been the most suitable representation of the data. Ideally, DHG
will lead to a hypergraph structure that better models the higher-order relationships
in the data.

DHG is most applicable to datasets where the hypergraph structure must be in-
ferred from the data, rather than being explicitly speci�ed. Because of this, DHG is
not applicable for learning heuristics over hypergraphs, as the hypergraph representa-
tion we utilise is explicitly speci�ed by the grounded planning problem. Moreover, as
we will discuss in Chapter 4, learning heuristic over hypergraphs involves estimating
shortest paths rather than explicitly learning feature embeddings.

Let Con(e) = f v1, . . . , vkeg and Adj(v) = f e1, . . . , ekv g represent the ke vertices a
hyperedge e contains (vertex set) and the set of hyperedges that contain vertex v
(adjacent hyperedge set), respectively. Moreover, let k = jCon(e)j = ke be the size of



26 Hypergraph Networks

Figure 3.5: The Vertex Convolution module (left) and Hyperedge Convolution module (right)
of a DHGNN. Taken from Figure 3 and 4 of [Jiang et al., 2019].

a new hyperedge e, and S = jAdj(v)j = kv be the size of the new adjacent hyperedge
set of a vertex v in the new hypergraph constructed by DHG.

DHG �rstly uses k-nearest neighbours to compute the k � 1 nearest neighbours
for each vertex v. These neighbouring vertices, along with v are used to construct a
new hyperedge for v in Adj(v) which is clearly of size k. Then, DHG uses k-means
clustering to compute n clusters over all the vertex features (where n > S � 1 is a
hyperparameter). For each vertex v, the S � 1 nearest clusters will then be assigned
as adjacent hyperedges of this vertex, and are subsequently added to Adj(v). The
hyperedge for each cluster is constructed by computing the k � 1 nearest vertices to
the cluster centre and appending the current vertex v – clearly the resulting hyperedge
contains k vertices. Evidently, DHG is used to dynamically update the hypergraph
structure by exploiting local structures (through k-nearest neighbours) and global
structures (through k-means clustering). We refer the reader to Algorithm 1 in [Jiang
et al., 2019] for more details.

Hypergraph Convolution (HGC) Module

A HGC module consists of the vertex convolution submodule and the hyperedge
convolution submodule, both depicted in Figure 3.5. Vertex convolution is used to
aggregate vertex features to a hyperedge, while hyperedge convolution is used to
aggregate hyperedge features to a vertex.

Recall that the DHG module dynamically updates the structure of the hypergraph
such that each hyperedge containsk vertices. The vertex convolution module learns
a transform matrix T of size k � k, which is used along with a 1-dimensional convo-
lution operator to transform and compact the k vertex features into a new hyperedge
feature (left diagram in Figure 3.5). Vertex convolution is used to compute the new
feature xe for each hyperedge e2 E in the hypergraph by enabling “inter-vertex and
inter-channel information" �ow.

In terms of implementing vertex convolution, a Multilayer Perceptron (MLP)
is used to generate this transform matrix T from the sampled vertex features Xv

(concatenated vertex features) for a hyperedge e, i.e. T = MLP1(Xv). Then, a 1-


	Acknowledgements
	Abstract
	Contents
	Introduction
	Planning
	Deep Learning
	Deep Learning for Planning
	Contributions and Research Goals
	Thesis Outline

	Background and Related Work
	Planning
	Representations in Planning
	Planning as Heuristic Search
	Heuristics

	Deep Learning
	Multilayer Perceptrons
	Training a Neural Network
	Relational Inductive Biases
	Deep Learning on Graphs

	Learning for Planning

	Hypergraph Networks
	Hypergraphs
	Deep Learning on Hypergraphs
	Hypergraph Neural Networks
	HyperGCN
	Dynamic Hypergraph Neural Networks
	Other Related Work

	Hypergraph Networks (HGNs)
	Hypergraph Representation
	Hypergraph Network (HGN) Block
	Relational Inductive Biases and Combinatorial Generalisation
	Configurable HGN Blocks and Existing Models as HGNs
	Summary


	Learning Heuristics over Hypergraphs
	Delete-Relaxation Heuristics as Shortest Paths over Hypergraphs
	hmax and hadd as shortest paths over hypergraphs

	STRIPS-HGNs: a Hypergraph Network for Learning Heuristics
	STRIPS-HGN Hypergraph Representation
	STRIPS-HGN Architecture
	Combinatorial Generalisation
	Limitations of STRIPS-HGNs

	Training Algorithm
	Training Data Generation
	STRIPS-HGN Weight Optimisation


	Empirical Evaluation
	Experimental Setup
	Search Configuration
	Hypergraph Network Configuration
	Training Procedure
	Interpreting the Result Plots 

	Domains and Problems
	Blocksworld
	Matching Blocksworld
	Gripper
	Hanoi
	Ferry
	Zenotravel
	n-puzzle
	Sokoban
	Multi-Domain Experiments

	Experimental Results
	Learning Problem-Size Dependent Heuristics
	Learning Domain-Dependent Heuristics
	Learning Domain-Independent Heuristics
	Discussion


	Conclusion
	Contributions
	Future Work
	Speeding up a STRIPS-HGN
	Improving the performance of STRIPS-HGNs
	Extending STRIPS-HGNs beyond STRIPS problems

	Final Remarks

	Bibliography

