
Learning Heuristics for Planning
with Hypergraph Networks

William Shen

A thesis submitted for the degree of
Bachelor of Advanced Computing

(Research and Development, Honours)
The Australian National University

c© William Shen 2019

Except where otherwise indicated, this thesis is my own original work.

William Shen

To my parents.

Acknowledgments

Firstly, I would like to express my sincere gratitude towards my supervisors Felipe
Trevizan and Sylvie Thiébaux for their continuous support, guidance and patience
throughout my honours project. Their indispensable feedback and advice has helped
me appreciate and navigate the world of deep learning and planning, and consider
whether research is the right career path.

I am also grateful to the Australian National University for funding my studies
for the duration of my degree through the National University Scholarship, and to
the College of Engineering and Computer Science and my supervisors for providing
me with the opportunity to attend and present my work at AI conferences.

Finally, I wish to thank my family who have continuously supported my education
and encouraged me to pursue my passions and interests.

v

Abstract

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals.
State-of-the-art planners use forward-chaining state space search guided by a heuristic.
This method of search incrementally builds the search tree from the initial state until
a goal is reached, whilst the heuristic is used to guide the search algorithm to what
the heuristic identifies as promising parts of the search space.

Deep Learning harnesses the power of neural networks to automatically learn
powerful features and knowledge from experience. Although deep learning has
gained immense popularity in fields including computer vision and natural language
processing, there is still no consensus as to what deep learning architecture is best for
reasoning and decision making tasks such as planning. Recent work in deep learning
for planning is primarily concerned with learning which planner to apply for a given
problem (planner selection), or learning generalised policies which are functions that
select which action should be applied by an agent in a given state.

In contrast, this thesis focuses on how we may harness the power of deep learning
to learn heuristic functions which exploit the structure of planning problems. We
investigate how we may learn heuristics which generalise to problems of larger size
than the problems a neural network was trained on within a single domain (i.e., a
domain-dependent heuristic). Additionally, we explore the feasibility of learning
domain-independent heuristics which are able to generalise across domains.

Our work makes three key contributions. Our first contribution is Hypergraph
Networks (HGNs), our novel framework which generalises Graph Networks [Battaglia
et al., 2018] to hypergraphs. A hypergraph is a generalisation of a normal graph in
which a hyperedge may connect any number of vertices together. The HGN frame-
work may be used to design new hypergraph deep learning models, and inherently
supports combinatorial generalisation to hypergraphs with different numbers of ver-
tices and hyperedges. Our second contribution is STRIPS-HGNs, an instance of a
Hypergraph Network which is designed to learn heuristics by approximating short-
est paths over the hypergraph induced by the delete relaxation of a STRIPS problem.
STRIPS-HGNs use a powerful recurrent encode-process-decode architecture which al-
low them to incrementally propagate messages within the hypergraph in latent space.
Our third and final contribution is our detailed empirical evaluation, which rigorously
defines the Hypergraph Network configurations and training procedure we use in our
experiments. We train and evaluate our STRIPS-HGNs on a variety of domains and
show that they are able learn domain-dependent and domain-independent heuristics
which potentially outperform hmax, hadd and LM-cut.

vii

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Planning . 1
1.2 Deep Learning . 2
1.3 Deep Learning for Planning . 2
1.4 Contributions and Research Goals . 3
1.5 Thesis Outline . 4

2 Background and Related Work 5
2.1 Planning . 5

2.1.1 Representations in Planning . 5
2.1.2 Planning as Heuristic Search . 7
2.1.3 Heuristics . 8

2.2 Deep Learning . 9
2.2.1 Multilayer Perceptrons . 10
2.2.2 Training a Neural Network . 11
2.2.3 Relational Inductive Biases . 11
2.2.4 Deep Learning on Graphs . 12

2.3 Learning for Planning . 15

3 Hypergraph Networks 19
3.1 Hypergraphs . 19
3.2 Deep Learning on Hypergraphs . 20

3.2.1 Hypergraph Neural Networks . 21
3.2.2 HyperGCN . 23
3.2.3 Dynamic Hypergraph Neural Networks 25
3.2.4 Other Related Work . 28

3.3 Hypergraph Networks (HGNs) . 28
3.3.1 Hypergraph Representation . 28
3.3.2 Hypergraph Network (HGN) Block 29
3.3.3 Relational Inductive Biases and Combinatorial Generalisation . . 31
3.3.4 Configurable HGN Blocks and Existing Models as HGNs 32
3.3.5 Summary . 37

ix

x Contents

4 Learning Heuristics over Hypergraphs 39
4.1 Delete-Relaxation Heuristics as Shortest Paths over Hypergraphs 39

4.1.1 hmax and hadd as shortest paths over hypergraphs 40
4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuristics 42

4.2.1 STRIPS-HGN Hypergraph Representation 42
4.2.2 STRIPS-HGN Architecture . 43
4.2.3 Combinatorial Generalisation . 47
4.2.4 Limitations of STRIPS-HGNs . 47

4.3 Training Algorithm . 48
4.3.1 Training Data Generation . 49
4.3.2 STRIPS-HGN Weight Optimisation 49

5 Empirical Evaluation 53
5.1 Experimental Setup . 53

5.1.1 Search Configuration . 54
5.1.2 Hypergraph Network Configuration 54
5.1.3 Training Procedure . 60
5.1.4 Interpreting the Result Plots . 62

5.2 Domains and Problems . 63
5.2.1 Blocksworld . 64
5.2.2 Matching Blocksworld . 64
5.2.3 Gripper . 65
5.2.4 Hanoi . 66
5.2.5 Ferry . 67
5.2.6 Zenotravel . 67
5.2.7 n-puzzle . 68
5.2.8 Sokoban . 69
5.2.9 Multi-Domain Experiments . 70

5.3 Experimental Results . 71
5.3.1 Learning Problem-Size Dependent Heuristics 72
5.3.2 Learning Domain-Dependent Heuristics 75
5.3.3 Learning Domain-Independent Heuristics 82
5.3.4 Discussion . 86

6 Conclusion 87
6.1 Contributions . 87
6.2 Future Work . 89

6.2.1 Speeding up a STRIPS-HGN . 89
6.2.2 Improving the performance of STRIPS-HGNs 90
6.2.3 Extending STRIPS-HGNs beyond STRIPS problems 92

6.3 Final Remarks . 92

Bibliography 101

Chapter 1

Introduction

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals
[Geffner and Bonet, 2013]. Deep learning is a sub-field within Artificial Intelligence
(AI) where deep neural networks are trained to learn incredibly rich and complex
functions from experience.

This thesis explores how deep learning may be used to learn both domain-dependent
and domain-independent heuristics for planning.

1.1 Planning

We are concerned with classical planning, where the environment is fully-observable
by the agent, and actions are deterministic [Geffner and Bonet, 2013]. More specifi-
cally, our work considers planning problems represented as STRIPS instances [Fikes
and Nilsson, 1971].

In a planning problem, an agent must reason about which actions it should take
from the initial state in order to achieve a certain set of goals. In doing so, the agent
must consider how certain actions may affect its future performance. The solution to
a planning problem is a sequence of actions which move the agent from the initial
state into a goal state. We call this solution a plan π = a0, . . . , an where each ai
represents the action applied at time step i.

State-of-the-art classical planning algorithms consider planning as forward-chaining
state space search guided by a heuristic. A forward-chaining state space search algo-
rithm incrementally builds a search tree from the initial state until it reaches a goal
state. A heuristic is a function which provides estimates of the cost to reach a goal
state from a given state. An informative heuristic usually helps a search algorithm
find a plan in a smaller number of node expansions, as it guides the search to more
promising parts of the search space.

Planning has proven to be an immensely important field within symbolic AI with
a variety of real-world applications. Classical planning has been used to control
industrial printers [Ruml et al., 2011], analyse network vulnerabilities [Boddy et al.,
2005], and even plan activities for rovers on Mars [Bresina et al., 2005].

1

2 Introduction

1.2 Deep Learning

The deep learning (DL) ‘revolution’ refers to the unprecedented rate at which DL
models have become the de facto state-of-the-art algorithms in several fields within
the past decade. For example, Convolutional Neural Networks (CNNs) have become
the standard in computer vision, as they are able to automatically learn filters to apply
to local neighbourhoods across an entire image [Krizhevsky et al., 2012; LeCun et al.,
1998]. Recurrent Neural Networks, including Long Short-Term Memory [Hochreiter
and Schmidhuber, 1997], have become extremely powerful for Natural Language
Processing (NLP) as they are able to learn the dynamics of sequential input [Young
et al., 2018].

The majority of existing deep learning architectures are designed for tasks which
are inherently perception-based. Loosely speaking, perception refers to the ability of
a neural network to interpret and understand data in a similar way to humans, and
generate a corresponding transformation. Examples of perception tasks could include
labelling objects in an image [Krizhevsky et al., 2012], or automatically classifying the
sentiment of a sentence [Joulin et al., 2016].

1.3 Deep Learning for Planning

Despite the prevalence of DL models for perception-based problems, there is still no
consensus as to what DL architecture is best for reasoning and decision making tasks
such as planning. The proposed deep learning approaches for planning can be split
into three categories: planner selection, learning generalised policies, and learning
heuristics.

An example of deep learning applied to planner selection is Sievers et al. [2019],
who train Convolutional Neural Networks (CNNs) over graphical representations of
planning problems to determine which planner should be invoked for a planning task.
For learning generalised policies and heuristics, Groshev et al. [2018] use CNNs and
Graph Convolutional Networks and show that they are able to generalise to problems
they were not trained on. Notice that both of these approaches use standard deep
learning architectures applied for planning.

In contrast, Action Schema Networks [Toyer et al., 2019] define a dedicated neural
network architecture which exploits the relational structure of planning problems
encoded in (P)PDDL [Younes and Littman, 2004] to learn generalised policies for
classical and probabilistic planning problems.

The motivation of this thesis is to use and extend existing deep learning architec-
tures to planning. Unlike existing approaches to learning for planning which rely
on hand-engineering features or encoding planning problems as images, we present
a domain-independent learning algorithm which automatically extracts knowledge
and features from a STRIPS problem. This knowledge is represented as a hypergrpah.

§1.4 Contributions and Research Goals 3

1.4 Contributions and Research Goals

The main objective of this thesis is to investigate how we may use deep learning
to learn heuristics by exploiting the structure of a planning problem. Our primary
goal is to propose a domain independent algorithm that can be used for learning
both domain-dependent and domain-independent heuristics. A domain-dependent
heuristic is able to generalise across problems in a given domain, while a domain-
independent heuristic is able to generalise across problems in multiple domains.

We learn heuristics instead of learning policies, i.e., actions to apply in a given
state, as a heuristic may be combined with a search algorithm that provides formal
guarantees. For example, A* search is complete meaning that it guarantees a plan
will be eventually found if one exists, regardless of the heuristic function used. This
means that learned heuristics can be used in critical applications, as a heuristic search
algorithm can easily correct for any deficiencies or misleading information. Although
it is possible to combine a search algorithm with a neural network which learns a
probability distribution over actions [Shen et al., 2019], learning heuristics provides
a much more efficient and lighter layer of reasoning . This thesis makes three key
technical contributions:

1. Hypergraph Networks
We introduce Hypergraph Networks (HGNs), our generalisation of Graph Net-
works [Battaglia et al., 2018] to hypergraphs. A hypergraph is a generalisation
of a normal graph in which a hyperedge may connect any number of vertices
together. HGNs may be used to design new deep learning models which op-
erate over hypergraphs, and inherently support combinatorial optimisation by
applying per-hyperedge and per-vertex updates. Moreover, HGNs are designed
to be highly flexible, and can be used to represent existing hypergraph deep
learning models.

2. STRIPS-HGNs: a Hypergraph Network for Learning Heuristics
STRIPS-HGNs is an instance of a Hypergraph Network which is designed to
learn heuristics by approximating shortest paths over the hypergraph induced
by the delete relaxation of a STRIPS problem. A STRIPS-HGN uses a recurrent
encode-process-decode architecture to incrementally propagate the latent vertex
and hyperedge features by using message passing.

3. Extensive Empirical Evaluation
We train and evaluate our STRIPS-HGNs on a variety of domains. Our experi-
ments show that STRIPS-HGNs are able to learn knowledge from the features
and structure in a hypergraph which helps it generalise to problems much
larger than the problems a network was trained on. We also show that it is
possible for a STRIPS-HGN to generalise to problems from a domain it was
not trained on. In contrast to the majority of existing techniques for learning
heuristics in planning, STRIPS-HGNs learn heuristics from scratch and do not
use input features computed from domain-independent heuristics.

4 Introduction

1.5 Thesis Outline

The structure of the remainder of this thesis is as follows:

• Chapter 2 – Background and Related Work. The main objective of this chapter
is to provide the reader with the relevant background necessary to understand
both planning and deep learning. Firstly, we formalise classical planning, dis-
cuss heuristic search, and investigate how existing delete-relaxation heuristics
are computed. We then present the Multilayer perceptron and describe how it
may be trained. This is followed by a review of existing neural network models
which operate over standard graphs. We conclude Chapter 2 with an reasoned
study of existing work for machine learning and deep learning applied to plan-
ning.

• Chapter 3 – Hypergraph Networks. In this chapter, we formally define what
a hypergraph is and then discuss existing deep learning models which op-
erate over hypergraphs. The main contribution in Chapter 3 is to introduce
Hypergraph Networks (HGNs), our novel framework which generalises Graph
Networks [Battaglia et al., 2018] to hypergraphs.

• Chapter 4 – Learning Heuristics over Hypergraphs. We firstly discuss how
hmax and hadd may be considered as shortest path problems over hypergraphs.
The main objective of Chapter 4 is to introduce STRIPS-HGNs, our specific
instance of a Hypergraph Network which emulates message passing using a re-
current encode-process-decode architecture. We discuss the inherent combinatorial
generalisation capabilities built into a STRIPS-HGN, and present an algorithm
for generating optimal training data and optimising the weights of the network.

• Chapter 5 – Empirical Evaluation. Chapter 5 firstly describes our experimental
setup in detail, including particulars regarding the configurations of our Hyper-
graph Networks and our training procedure which aims to reduce noise. Next,
we introduce the domains we evaluate our STRIPS-HGNs on and the classes
of heuristics which we aim to learn. The remainder of Chapter 5 analyses and
explains the results of our experiments, which show that STRIPS-HGNs are able
to learn domain-dependent and domain-independent heuristics.

• Chapter 6 – Conclusion. We conclude this thesis by summarising our contribu-
tions, and discussing several promising directions for future work.

Chapter 2

Background and Related Work

This chapter aims to provide the reader with the relevant background necessary to
understand planning and deep learning. Section 2.1 firstly formalises classical plan-
ning, then discusses heuristic search, and closes by presenting domain-independent
heuristics for planning.

Section 2.2 then provides a brief introduction to neural networks, how they are
trained, and a study of graph neural networks. Section 2.3 concludes this chapter
by discussing current machine learning and deep learning approaches applied to
planning.

2.1 Planning

Planning is the fundamental ability of an intelligent agent to reason about what
decisions it should make in a given environment to achieve a certain set of goals
[Geffner and Bonet, 2013]. In less abstract terms, the agent’s objective is to apply a
sequence of actions that moves it from the initial state to a goal state, ideally with
minimal cost.

In this thesis, we are mainly concerned with classical planning, where the envi-
ronment is fully-observable by the agent, and applying an action can only lead to one
outcome (i.e., actions are deterministic). This is in contrast to probabilistic planning,
where actions are stochastic and may lead to one of several outcomes which is sam-
pled according to a predefined state transition distributed. [Mausam and Kolobov,
2012].

2.1.1 Representations in Planning

Classical Planning

A classical planning problem may be described as the state model S = 〈S, s0, SG, A, f , c〉
[Geffner and Bonet, 2013], where:

• S is the finite set of states;

• s0 ∈ S is the initial state;

5

6 Background and Related Work

• SG ⊂ S is the non-empty set of goal states;

• A is the finite set of actions and A(s) ⊆ A indicates the actions which are
applicable in a given state s ∈ S;

• f (a, s) is the transition function which indicates the new state s′ = f (a, s) after
applying action a ∈ A(s) in state s ∈ S; and

• c(a, s) is cost of applying action a ∈ A(s) in the state s.

A solution to a classical planning problem is a plan π = a0, . . . , an (i.e., a sequence
of actions) which generates a state sequence s0, s1, . . . , sn+1 where sn+1 ∈ SG is a goal
state [Geffner and Bonet, 2013].

The cost of a plan is the sum of the costs of applying each action in the plan
∑i∈{0,...,n} c(ai, si). An optimal plan is a plan which has minimum cost. This thesis
considers classical planning problems where actions have a unit cost of c(a, s) = 1 for
all s ∈ S and a ∈ A(s). Subsequently, the cost of a plan is now given by its length.

STRIPS Representation

STRIPS is a language for representing classical planning problems which have boolean
state variables [Fikes and Nilsson, 1971]. Thus, a proposition in STRIPS is a fact which
must either be true or false. We define a STRIPS problem as a tuple P = 〈F, O, I, G, c〉
where:

• F is the set of propositions;

• O is the set of actions;

• I ⊆ F represents the initial state;

• G ⊆ F represents the set of goal states; and

• c is a function c(o) mapping an action o ∈ O to a cost.

Each action o ∈ O is defined as a triple 〈Pre(o), Add(o), Del(o)〉 where Pre(o) repre-
sents the set of propositions which must be true in order for o to be applied, while
Add(o) and Del(o) represent the sets of propositions which action o make true and
false after applying o, respectively. We call Pre(o) the preconditions, Add(o) the ad-
ditive effects, and Del(o) the delete effects. It may be easily observed that STRIPS
encodes the state model S = 〈S, s0, SG, A, f , c〉 of a classical planning problem.

We define the delete relaxation of a STRIPS problem P as the STRIPS problem
P+ = 〈F, O′, I, G, c〉, where O′ = {〈Pre(o), Add(o), ∅〉 | o ∈ O}. Evidently, delete
relaxation ignores the negative effects of each action in P.

It is important to note that classical planning is very difficult in terms of com-
putational complexity. Bylander [1994] showed that determining whether a STRIPS
problem has a plan is PSPACE-complete. In contrast, deciding whether a plan exists
for the delete relaxation is a polynomial time problem, and determining whether a
plan of length less than a given bound exists is NP-complete.

§2.1 Planning 7

Planning Domain Description Language (PDDL)

The Planning Domain Definition Language (PDDL) is a standardised language which
may be used to represent STRIPS problems [Ghallab et al., 1998]. Problems specified
in PDDL consist of two parts: the domain definition and a problem definition.

The domain definition contains the action schemas and predicates which define a
‘template’ for instantiating a specific problem.

For example, car-at(?loc) is a predicate which describes whether a car is at the lo-
cation variable ?loc. Now, drive(?loc1, ?loc2) is an action schema for driving between
the location variables ?loc1 and ?loc2, where both ?loc1 and ?loc2 are free variables.
This action schema requires car-at(?loc1) to be true (precondition), and generates a
new state in which car-at(?loc1) is false and car-at(?loc2) is true.

A problem definition specifies the object names which replace the variables in the
domain definition, along with the description of the propositions in the initial state
and in the set of goal states. Grounding is then used to convert the domain definition
and problem definition into a STRIPS problem.

2.1.2 Planning as Heuristic Search

Having discussed the representation of planning problems, we now investigate heuris-
tic search, a strategy used by the majority of state-of-the-art-planners. Classical plan-
ning may be viewed as a path finding problem over a directed graph. The vertices
(nodes) represent the states in a problem, while the edges represent actions. Search
algorithms for this view of classical planning are known as state-space planners. Since
the state space is exponential in the number of propositions in a planning problem
and cannot be generated upfront and entirely explored, state space planners exploit
the STRIPS representation of the problem to incrementally generate this directed
graph as more search is performed [Geffner and Bonet, 2013].

Heuristic search planners are a special case of state-space planners that rely on
forward-chaining search from the initial state to a goal state using a heuristic h,
typically computed from the STRIPS representation, and which provides an estimate
of the cost to reach a goal from a given state to guide the search to promising regions
of the state space [Bonet and Geffner, 2001]. Many state-of-the-art planners are based
on heuristic search algorithms – we review two heuristic search algorithms below.

A* Search

A* is a best-first search algorithm which at each search step, expands the node n
which maximises the heuristic value h(n) plus the cost of the path g(n) from the root
node for the initial state to n [Hart et al., 1968]. That is, A* selects the node that
minimises f (n) = g(n) + h(n) for expansion. The intuition behind A* is that it avoids
expanding paths that are already known to be expensive [Russell and Norvig, 2016].

A* is guaranteed to terminate and is complete, that is, it always finds a plan given
one exists, no matter how uninformative the heuristic is. It can also be proven that if
the heuristic function h is admissible, then A* is guaranteed to return the optimal plan

8 Background and Related Work

[Hart et al., 1968]. An admissible heuristic is a heuristic which never overestimates
the true optimal cost from any state to a goal. We will formalise heuristics in Section
2.1.3.

Greedy Best-First Search (GBFS)

GBFS selects the node that minimises f (n) = h(n) for expansion In GBFS, nodes are
selected for expansion based solely on their heuristic value – i.e., the cost to reach a
node n (g(n) in A*) is ignored when choosing a node to expand.

GBFS is a satisficing search algorithm which usually finds a plan much faster
than A*, given its greedy behaviour. However, these plans are not guaranteed to
be optimal. Because of this, we focus on using A* as the search algorithm in our
experiments.

2.1.3 Heuristics

Heuristic functions allow a heuristic search algorithm to focus its search on what
the heuristic believes to be promising parts of the state space. A heuristic function
h : S → R provides an estimate of the cost to reach a goal state from a given state s.
The optimal heuristic h∗(s) is the heuristic that gives the optimal cost to reach a goal
state from s. A heuristic h is said to be admissible if it never overestimates the cost of
reaching a goal, i.e., ∀s ∈ S h(s) ≤ h∗(s). A heuristic that is not admissible is called
inadmissible.

As we discussed in Section 2.1.2, A* is only guaranteed to find the optimal plan
if used with an admissible heuristic. Despite this, a search algorithm often finds a
solution much faster when used with an non-admissible rather than an admissible
heuristic. This may be attributed to the fact that inadmissible heuristics can reduce the
expanded search space by overestimating the cost of states it deems non-promising,
i.e. by setting h(s)� h∗(s) it can avoid expanding s.

This thesis considers three baseline domain-independent heuristics which are
based on delete-relaxation: hmax (admissible), hadd (inadmissible) [Haslum and Geffner,
2000], and the Landmark-Cut heuristic (admissible) [Helmert and Domshlak, 2009].

Delete-Relaxation Heuristics

Delete-relaxation approximate the optimal heuristic value in a relaxed version of a
planning problem where the negative effects of each action are ignored. This means
that once a proposition becomes true, it will always stay true. Recall from Section
2.1.1 that the delete relaxation for a STRIPS problem P = 〈F, O, I, G, c〉 is the STRIPS
problem P+ = 〈F, O′, I, G, c〉, where O′ = {〈Pre(o), Add(o), ∅〉 | o ∈ O}.

Since computing the optimal heuristic value for a state s in P+ is an NP-complete
problem, hmax approximates this value as the cost of achieving the most expensive
proposition in G starting from s. On the other hand, hadd approximates the optimal
heuristic value for a state s in P+ as the sum of the costs of achieving each proposition
in G independently of the others. hmax is admissible while hadd is inadmissible. We

§2.2 Deep Learning 9

detail the computation of hmax and hadd in Section 4.1.1, where we also discuss how
they may be viewed as approximating shortest paths over hypergraphs.

The LM-cut heuristic [Helmert and Domshlak, 2009] starts from the observation
that the optimal cost of solving P is the minimum-cost of any hitting set for a complete
set of disjunctive action landmarks for P+. A disjunctive action landmark for a planning
problem is a set of actions, at least one of which must be present in any plan solving
the problem. Therefore any plan must “hit" all the disjunctive action landmarks for
the problem. The optimal plan corresponds to selecting the cheapest set of actions that
hits them all. Since computing a minimum cost-hitting set is NP-complete and the
number of disjunctive action landmarks can be exponential in the problem size, LM-
cut approximates the solution to this problem in a way that guarantees admissibility.
It does so via a series of hmax computations for increasingly relaxed problems starting
from P+, and by incrementally finding a useful and sufficient set of landmarks that
correspond to cuts in a justification graph. Although LM-cut may be more expensive
to compute than hmax, the heuristic estimates it provides are generally much more
informative.

Other Families of Heuristics

Although this thesis focuses on delete-relaxation heuristics, it is important to note
that there are other families of heuristics which are widely used in planning.

Pattern Database Heuristics (PDBs) use lookup tables to store optimal heuristic
values for an abstraction (pattern) of a problem [Haslum et al., 2007; Geffner and
Bonet, 2013]. This abstraction is obtained by projecting the state space of a problem
down to a subset of variables. PDBs then precompute the optimal values for these
abstractions, and use these precomputed values for different patterns to guide the
search towards states matching patterns with small costs.

Potential heuristics compute weighted linear combinations over a set of features
for a state [Pommerening et al., 2015]. These features may be automatically learned
from a small set of training instances by using mixed integer linear programming to
give a domain-dependent heuristic [Francès et al., 2019].

2.2 Deep Learning

Deep learning (DL) has proven to be immensely successful in several fields including
computer vision and natural language processing, where DL models have become
the de facto state-of-the-art algorithm. This immense success may be attributed to
several factors including the increased power of Graphical Processing Units (GPUs)
and the wide-spread availability of big data.

This section aims to provide the reader with the necessary background for un-
derstanding the deep learning by firstly introducing multilayer perceptrons and dis-
cussing how they may be trained with backpropagation and gradient descent. We then
discuss the concept of relational inductive biases, and conclude this section with a study
of existing neural networks which operate over graphs.

10 Background and Related Work

Figure 2.1: An example of a multilayer perceptron with three neurons in the input layer,
a single hidden layer with 4 neurons, and two neurons in the output layer. Each arrow
represents a weight in the MLP which needs to be learned. Diagram from https://commons.
wikimedia.org/wiki/File:Colored_neural_network.svg

2.2.1 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are the simplest form of feedforward neural networks
which contain fully connected layers of neurons. An example of a MLP with one
hidden layer is depicted in Figure 2.1. A feedforward neural network is a network
in which information only moves forward in one direction. This is in contrast to
a recurrent neural network, which has lateral or feedback connections. A neuron
represents a function which performs a weighted summation on its input and then
applies an activation function.

The first layer in a MLP receives an input feature vector which is then fed through
one or more intermediate hidden layers to compute hidden representations for each
layer. The output of the final hidden layer is then fed through the output layer to get
the output of the MLP. A hidden layer performs weighted summations of the hidden
representations from the previous layer to compute a new hidden representation. This
hidden representation is also called the latent representation, as it encodes features
which are not easily interpretable or understood.

Throughout this section, we follow the notation defined in Toyer [2017]. In formal
terms, the hidden representation h(l) which is output by the l-th layer in a MLP is
computed as:

h(l) = f (W(l)h(l−1) + b(l))

where h(l−1) is the hidden representation of the previous layer (we define h(0) to be
the input features), W(l) are the weights and b(l) are the biases of the neurons in
the l-th layer. We may aggregate the weights W(l) and biases b(l) across the L layers
l ∈ {1, . . . , L} in a MLP into a single variable θ, which we call the weights of a MLP.

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg

§2.2 Deep Learning 11

f is an activation function which applies a non-linearity to the weighted summation,
such as the sigmoid function or the Rectified Linear Unit (ReLU) [Nair and Hinton,
2010].

As we increase the number of hidden layers in a MLP, the neural network is
progressively able to extract more complex features from the input. However, a larger
network leads to an increased number of weights and biases which we would need
to learn, and would increase the computation cost of training and evaluating a MLP.

2.2.2 Training a Neural Network

This thesis is only concerned with supervised learning, where a neural network
learns from a labelled training dataset T = {(x1, y1), . . . , (xn, yn)}, where each (xi, yi)
represents the (input features, desired outputs). The objective of a MLP is to optimise
its weights θ to minimise the total loss L(T) (Equation 2.1). The loss function `
measures the deviation of the predictions provided by a neural network when we
feed it with the input features {x1, . . . , xn}, to the targets features {y1, . . . , yn}. We
define the total loss as

L(T) = ∑
xi ,yi∈T

`(ŷi, yi) (2.1)

where ŷi = MLP(xi) is the prediction made by the MLP for the input feature xi. In
order to train a neural network using backpropagation and gradient descent, the loss
function ` must be differentiable. This thesis only considers the mean squared error
(MSE) loss function, which is defined as `MSE = |ŷi − yi|2.

Backpropagation and Gradient Descent

The backpropagation algorithm exploits the chain rule to update the weights of a
neural network in a backwards manner, starting from the output layer and ending
at the input layer of a network. We refer the reader to [Goodfellow et al., 2016] for a
detailed discussion on backpropagation.

Given a differentiable loss function `, we can compute the gradient dLθ(T)
dθ of the

total loss with respect to the weights θ of the network. The weights θ are then updated
in the direction which minimises L(T) according to this gradient. This weight update
approach is called batch gradient descent. We discuss other forms of gradient descent
in Section 4.3.

We repeat this weight update procedure for several epochs until the neural network
reaches a satisfactory total loss L(T). An epoch refers to a single pass over all the
samples in the training dataset T .

2.2.3 Relational Inductive Biases

Inductive biases refer to the assumptions that a learning algorithm makes which
allow it to generalise beyond the finite set of data it was trained on.

12 Background and Related Work

Component Entities Relations Rel. inductive bias Invariance

MLPs Neurons All-to-all Weak -

Convolutional Grid elements Local Locality Spatial translation

Recurrent Timesteps Sequential Sequentiality Time translation

Graph network Vertices Edges Arbitrary Vertex, edge permutations

Table 2.1: Relational inductive biases in standard deep learning components. Modified from
Table 1 in [Battaglia et al., 2018].

Relational inductive biases extend this notion and refer to the inductive biases
which impose constraints on the relationships and interactions of the entities in a
learning algorithm [Battaglia et al., 2018]. A learning algorithm has a strong rela-
tional inductive bias if it imposes little to no constraints on these relationships and
interactions. Table 2.1 summarises the relational inductive biases in standard deep
learning components; we refer the reader to [Battaglia et al., 2018] for a more detailed
discussion.

The relational inductive biases of MLPs are very weak, as they do not impose any
constraints on the interactions between neurons in layer l and neurons in layer l + 1
as they are fully connected. This means that all neurons in a fully connected layer
may be used to determine the output of the layer. On the other hand, Convolutional
Neural Networks (CNNs) have strong relational inductive biases as they impose
locality and translation invariance by applying the same filters in local neighbourhoods
within grid data (e.g., images) [Krizhevsky et al., 2012; LeCun et al., 1998].

Graph Networks (GNs) [Battaglia et al., 2018], which we briefly describe in Section
2.2.4, impose much stronger relational inductive biases than CNNs. This is because
GNs operate over graphs which represent arbitrary relational structures, while CNNs
are only able to operate over grid-based structures.

2.2.4 Deep Learning on Graphs

There is an increasing interest in applications of deep learning to non-Euclidean
domains and problems which may inherently be formalised as a graph. However,
the complexity of graph-based data means that it is difficult for learning algorithms
to capture the complex interdependence of entities within a graph. This subsection
provides a brief study of current state-of-the-art spectral and spatial-based graph neural
networks (GNNs). For more insights into GNNs, we refer the reader to the following
survey [Wu et al., 2019].

Spectral-based Approaches

Spectral-based graph neural networks define convolutions based on spectral graph
theory. We will not derive the formulas we use here, as the derivations require
extensive knowledge on graph signal processing. We refer the reader to [Wu et al.,
2019] for the formal derivations.

§2.2 Deep Learning 13

The graph Laplacian is a mathematical representation of an undirected graph
which has several applications in spectral graph theory, including the ability to con-
struct low dimensional embeddings for vertices. The graph convolution of an input
graph signal x with a filter g ∈ RN is defined as x ∗G gθ [Wu et al., 2019], where ∗G
represents the convolution on the graph G. The objective of a spectral GNN is to
define a filter gθ .

Bruna et al. [2013] define gθ as a set of learnable parameters with multiple chan-
nels which uses the eigen decomposition of the normalised graph Laplacian. Their
approach cannot be applied to graphs with different structures as the eigenvectors
and eigenvalues vary significantly even with small perturbations to a graph. More-
over, computing the eigen decomposition is cubic in the number of vertices n in the
graph, i.e., O(n3), meaning that their approach is unscalable to larger graphs.

Defferrard et al. [2016] approximate gθ by using Chebyshev polynomials and the
graph Laplacian. Their approach is linear in the number of edges m, i.e., O(m),
and provides a significant improvement over the O(n3) computational complexity of
[Bruna et al., 2013].

Spectral-based Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017]
further approximate gθ with the first-order approximation of Chebyshev polynomials
and a renormalisation trick. This results in the following layer-wise propagation rule
for the l-th GCN layer:

X(l+1) = σ
(

D̃−1/2ÃD̃−1/2X(l)W(l)
)

where Ã = A + IN is the adjacency matrix of the undirected graph with self-
connections, IN is the identity matrix of size N, D̃[i, i] = ∑j Ã[i, j] is the square
degree containing the degrees of each vertex in Ã, W(l) is the trainable weight matrix,
and σ is an activation function. X(l) is the matrix of the hidden representations of the
vertices at the l-th layer. D̃−1/2ÃD̃−1/2 is called the renormalised adjacency matrix.
We refer the reader to [Kipf and Welling, 2017] for the formal derivation.

Although GCNs may be interpreted as spatial-based models because they propa-
gate messages along the edges in a graph, they still rely on an approximation of the
graph Laplacian. We consider all models which utilise the graph Laplacian in any
way, shape, or form as spectral-based. This allows us to maintain a strong distinc-
tion with spatial-based graph neural networks which explicitly perform convolutions
using neighbouring vertices.

Spatial-based Approaches

Spatial-based graph neural networks formulate convolutions based on the neighbour-
hood around each vertex. We discuss Message Passing Neural Networks [Gilmer
et al., 2017] and Graph Networks [Battaglia et al., 2018], two frameworks which
generalise several existing GNNs.

Message Passing Neural Networks (MPNNs) is a unified framework which gen-
eralises both spatial-based and spectral-based GNNs [Gilmer et al., 2017]. MPNNs

14 Background and Related Work

are designed primarily to express spatial-based GNNs. Let G be an undirected graph
with vertex features xv and edge features evw. MPNNs consist of two phases: a mes-
sage passing phase and a readout phase. The message passing phase is defined in
terms of a shared message function Mt and a shared vertex update function Ut. In
each message passing step, the new latent representation ht+1

v for each vertex in the
graph is computed based on the message mt+1

v :

mt+1
v = ∑

w∈N(v)
Mt(ht

v, ht
w, evw)

ht+1
v = Ut(ht

v, mt+1
v)

where N(v) denotes the neighbouring vertices of v in the graph G. Evidently, it is
possible to repeatedly apply the message passing phase to continuously update the
latent representations of the vertices in the graph. In every step of message passing,
each vertex sends a ‘signal’ to its neighbouring vertices. Subsequently, repeated
applications of message passing allow information to travel long distances in the
graph.

The readout phase of MPNNs computes a graph-level output ŷ using a readout
function R which accepts the latent features of the vertices hT

v after the last message
passing step at time step T as input:

ŷ = R({hT
v | v ∈ G}).

The message function Mt, vertex update function Ut, and readout function R are
all functions which are learned by a MPNN. That is, each function could be imple-
mented as any learning model such as a MLP. Gilmer et al. [2017] show that MPNNs
subsume notable GNNs including Convolutional Networks for Learning Molecular
Fingerprints [Duvenaud et al., 2015], Gated Graph Neural Networks [Li et al., 2015],
and Kipf and Welling [2017]’s spectral-based Graph Convolutional Networks.

Graph Networks (GNs) is a framework which subsumes an increased family of
GNNs including MPNNs. GNs use flexible graph-to-graph modules which perform
computations over the features and structures within a graph. These modules, which
are called GN blocks, may be composed sequentially and repeatedly applied. Chapter
3 will present Hypergraph Networks, our extension of Graph Networks to hypergraphs,
in detail.

Comparison between Spectral and Spatial GNNs

We break down the differences between spectral and spatial GNNs into two aspects:
generality and flexibility [Wu et al., 2019].

Spectral GNNs generally assume that the graph is fixed, as the eigenvectors and
eigenvalues of the normalised graph Laplacian may vary substantially across graphs.
Although Kipf and Welling [2017]’s GCNs are able to generalise across graphs because
they use localised first-order approximations of spectral graph convolutions, their
generalisation capability is still limited in comparison to the capability of spatial

§2.3 Learning for Planning 15

GNNs. Spatial GNNs are naturally able to generalise to graphs of varying structure
and with different numbers of vertices and edges. This is because they perform
convolutions on each vertex in a graph based on a vertex’s local neighbourhood.

Directed graphs must be converted to undirected graphs before they may be
applied to a spectral GNN, as the graph Laplacian is not well-defined for directed
graphs. Moreover, spectral-based GNNs are only able to perform convolutions based
on vertex-level features and do not support edge-level or global features as input.
This is in contrast to spatial based GNNs including Graph Networks, which are able
to support edge-level, vertex-level and global input features.

As we have demonstrated, spectral-based GNNs have significant limitations. For
this reason, this thesis focuses on spatial-based approaches. Chapter 3 will introduce
Hypergraph Networks, our generalisation of Graph Networks to hypergraphs.

2.3 Learning for Planning

Machine learning (ML) and deep learning (DL) approaches to planning have recently
seen a significant increase in interest, given the ever-increasing ability of learning
algorithms to automatically learn complex relationships and features from experience.
Current ML and DL approaches for planning can be split into three major categories:
planner selection, learning generalised policies, and learning heuristics.

Planner Selection

Planner selection involves selecting which planner out of a portfolio of planners
should be applied for a given task. This is motivated by the fact that the performance
of planners may vary across different tasks. Sievers et al. [2019] introduce Delfi, an
online portfolio-based planner which firstly converts a planning task into an image
by using the binary image representation of the adjacency matrix given by the abstract
structure graph of the task, and then train Convolutional Neural Networks to learn
which planner to invoke. Similarly, Ma et al. [2019] use Graph Neural Networks
directly on the problem description graph and the abstract structure graph of a task for
online planner selection and adaptive scheduling. We do not describe planner selection
in detail as it is not particularly relevant for this thesis.

Learning Generalised Policies

We consider a stochastic policy as a function which returns a probability distribution
over the actions an agent may apply in a given state. A generalised policy is a
stochastic policy which may be applied across all problems in a given domain.

Groshev et al. [2018] use hand-crafted translators to convert states in a domain
into a representation which may be used to train a Convolutional Neural Network
(CNN) or Graph Convolutional Network (GCN) for learning generalised policies and
heuristics. For example, states in Sokoban are converted into their corresponding
grid-based image representation which contains the layout of the warehouse, location

16 Background and Related Work

of the boxes, initial state, goal state, etc. (see Figure 5.9 for an example) before they
are passed to a deep CNN. Hence, the major limitation of Groshev et al. [2018]’s
approach is that each domain requires hand-engineered translators.

Action Schema Networks (ASNets) [Toyer et al., 2019] define a dedicated neural
network architecture which exploits the relational structure of planning problems
encoded in (P)PDDL1 [Younes and Littman, 2004] to learn generalised policies for
deterministic and probabilistic planning. In contrast to [Groshev et al., 2018], ASNets
do not require any hand-crafted input features or translators as the network design
is automatically inferred from the PPDDL problem [Toyer et al., 2019]. An ASNet
is composed of alternating action layers and proposition layers which are sparsely
connected according to the structure of the action schemas defined in a PPDDL
problem. One significant advantage of ASNets is its sophisticated weight sharing
scheme which allows a network to theoretically generalise to problems of any size in
a given domain. A disadvantage of ASNets is its fixed receptive field which limits its
capability to support long chains of reasoning.

Issakkimuthu et al. [2018] defined custom neural network architectures which are
able to learn policies for individual planning problems defined in RDDL [Sanner,
2011]. On the other hand, ToRPIDo [Bajpai et al., 2018] and TraPSNet [Garg et al.,
2019] learn generalised policies which are able to transfer between RDDL problems,
albeit with the assumptions of unary actions and binary non-fluents they impose
on the problems. In contrast to ASNets which use a dedicated neural network ar-
chitecture, ToRPIDo and TraPSNet use standard graph convolutional networks and
graph attention networks [Veličković et al., 2018] to encode states in latent space,
respectively.

Learning Heuristics

Although a copious amount of research exists for learning heuristics with deep learn-
ing for classic NP-hard combinatorial optimisation problems such as the Travelling
Salesman and Knapsack problem [Khalil et al., 2017; Li et al., 2018], it is unclear
how we may apply these techniques to exploit the relational structure of a planning
problem. Nevertheless, there has been extensive research on how we may learn heuris-
tics for planning using standard machine learning techniques including multilayer
perceptrons (MLPs) and bootstrap-learning.

Yoon et al. [2008] learn linear heuristic functions which are weighted linear com-
binations of features derived from a relaxed plan. These features may include the
length of the relaxed plan and information regarding the delete effects which were
ignored by the relaxed plan. The heuristic functions which are learned by [Yoon
et al., 2008] are domain-dependent, as they learn knowledge specific to the planning
domain they were trained on.

Arfaee et al. [2010] and Geissmann [2015] use bootstrap-learning to iteratively
learn a stronger heuristic function starting from a weak heuristic function. Their
approach relies on a bootstrapping technique which adaptively updates the training

1PPDDL is an extension of PDDL which supports probabilistic planning.

§2.3 Learning for Planning 17

data depending on whether the heuristic at a given iteration is able to successfully
solve the training tasks. If the heuristic is able to solve a training task, the resulting
state sequences for the plan are added to the training set. If a heuristic is unable
to solve a training task, then states encountered on a random walk from the goal
state are added to the training set – these represent states which are hopefully easier
to solve. The updated training set is then used to train a stronger heuristic at the
next iteration. Both works used a shallow MLP with a single hidden layer to learn a
heuristic function over the training data. Geissmann [2015] shows that it is possible to
learn a domain-independent heuristic for classical planning using bootstrap-learning.

Garrett et al. [2016] use Support Vector Machines (SVMs), a kernel-based machine
learning algorithm [Boser et al., 1992], for learning domain-dependent heuristics
which accurately ranks states as opposed to estimating the optimal heuristic h∗. The
input features to a SVM for each pair of actions (a1, a2) include: the set intersection
of the preconditions and effects for a1 and a2, the temporal ordering of a1 and a2 in an
approximate plan, and features derived from an existing domain-independent heuristic
including the heuristic value. One limitation of the heuristics learned by [Garrett et al.,
2016] is that they can only be applied to search algorithms which operate on ranks,
such as greedy best-first search. In contrast, the heuristics we learn may be applied
to any search algorithm which uses the heuristic values, such as A*.

Gomoluch et al. [2017] learn domain-independent planning heuristics by training
a MLP on features derived from hFF [Hoffmann, 2001], including the number of
operators in the FF relaxed plan, and the heuristic value. This can be considered as
learning an improvement on hFF. In contrast to [Garrett et al., 2016; Gomoluch et al.,
2017; Yoon et al., 2008], our neural networks learn heuristics from scratch and do not
use input features computed from existing domain-independent heuristics.

18 Background and Related Work

Chapter 3

Hypergraph Networks

In Section 2.2.3, we argued for the importance of a neural network architecture with a
strong relational inductive bias, as it allows a network to exploit the inherent structure
of the problem at hand. For example, Convolutional Neural Networks impose locality
and translation invariance – biases which are effective for processing images as there
is high covariance within the pixels in a local neighbourhood of an image.

Although there are existing neural network architectures designed for learning
over hypergraphs, including Hypergraph Neural Networks [Feng et al., 2019] and
HyperGCN [Yadati et al., 2018], deep learning on hypergraphs is still in its infancy
in comparison to learning on standard graphs. Moreover, existing techniques rely
predominantly on spectral rather than spatial convolutions.

In this chapter, we will rigorously define hypergraphs in Section 3.1 and then
explore existing deep learning models in Section 3.2. We finish this chapter by
presenting Hypergraph Networks (Section 3.3), our novel framework based on Graph
Networks [Battaglia et al., 2018] which generalises and extends existing spectral-based
and spatial-based hypergraph models. As we will discuss, the Hypergraph Networks
framework exploits the inherent relational structure of a hypergraph and provides a
powerful toolkit for constructing new learning models.

3.1 Hypergraphs

A hypergraph is a generalisation of a normal graph in which a hyperedge may connect
any number of vertices together. A undirected hypergraph may be formulated as a
pair G = (V , E), where V = {v1, v2, . . . , vNv} is the set of vertices of cardinality Nv

(vertex set), and E = {e1, e2, . . . , eNe} is the set of hyperedges of cardinality Ne with
ei ⊆ V (hyperedge set) [Gallo et al., 1993].

A hyperedge e is defined as the set of vertices which the hyperedge contains.
Clearly, when |ei| = 2 for i ∈ {1, . . . , Ne}, then H is a standard undirected graph.

The incidence matrix H of a hypergraph is a Nv × Ne matrix where for i ∈
{1, . . . , Nv} and j ∈ {1, . . . , Ne}:

H[i, j] =

{
1, if vi ∈ ej

0, otherwise.
(3.1)

19

20 Hypergraph Networks

v1

v2

v3

Tail(e)	=	T

Head(e)	=	H

v4

v5

Figure 3.1: Example of a directed hyperedge e = (T, H) where Tail(e) = T = {v1, v2, v3} and
Head(e) = H = {v4, v5}.

Let h(v, e) represent the entry in the incidence matrix H for vertex v and hyper-
edge e. A weighted undirected hypergraph is defined as a triple G = (V , E , w), where
each hyperedge e ∈ E is associated with a weight w(e) ∈ R+.

Directed Hypergraphs

A directed hypergraph is a hypergraph G = (V , E) with directed hyperedges. A
directed hyperedge e ∈ E is a pair (T, H) where T and H are vertex sets. Let
Tail(e) = T ⊆ V be the tail, and Head(e) = H ⊆ V be the head of e, respectively.
An example of a directed hyperedge is shown in Figure 3.1. The incidence matrix
H of a directed hypergraph is a Nv × Ne matrix where for i ∈ {1, . . . , Nv} and
j ∈ {1, . . . , Ne}:

H[i, j] =

−1, if vi ∈ Tail(ej)

1, if vi ∈ Head(ej)

0, otherwise.

(3.2)

Figure 3.2 depicts an example of a directed hypergraph and its corresponding
incidence matrix. A weighted directed hypergraph is a triple G = (V , E , w), where
each hyperedge e ∈ E is directed and associated with a weight w(e) ∈ R+.

3.2 Deep Learning on Hypergraphs

Research on deep learning for hypergraphs is still in its infancy, despite the influx
of new models for regular graphs. Here, we will present and compare the current
state-of-the-art hypergraph learning algorithms. We will discuss these models in a
fair amount of detail as our framework, Hypergraph Networks, may be used to define
all of them.

§3.2 Deep Learning on Hypergraphs 21

Figure 3.2: Example of a directed hypergraph and its corresponding incidence matrix [Gallo
et al., 1993]. Note that the hyperedge E5 has an empty head.

3.2.1 Hypergraph Neural Networks

Hypergraph Neural Networks (HGNNs) [Feng et al., 2019] is the first work to define
spectral hypergraph convolutions by approximating hypergraph Laplacians in terms
of first-order Chebyshev polynomials. The hypergraph Laplacian is a generalisation
of the graph Laplacian discussed in Section 2.2.4. Spectral convolutions rely on
the formulation of the graph in the spectral (Fourier) domain. HGNNs are able to
learn the higher-order relationships between the entities in the data, and were shown
to outperform existing state-of-the-art methods that do not exploit the structure of
hypergraphs.

Formulation

Given an undirected weighted hypergraph G = (V , E , w), we define W ∈ RNe×Ne

and De ∈ RNe×Ne
to be the diagonal matrices with each diagonal entry contain-

ing the weight w(ei) and degree δ(ei) = ∑v∈V h(v, ei) for the hyperedge ei for i ∈
{1, . . . , Nv}, respectively. Furthermore, Dv ∈ RNv×Nv

is defined as the diagonal
matrix representing the degree of each vertex with each diagonal entry containing
d(vj) = ∑e∈E w(e)h(vj, e) for j ∈ {1, . . . , Nv}.

We refer the reader to [Feng et al., 2019] for full details on how the hyperedge
convolution is derived in terms of Fourier transforms, Chebyshev polynomials, and
relevant approximations and simplifications. A full treatment of this derivation is not
presented in this thesis as the derivation is based heavily on spectral graph theory. A
hyperedge convolutional layer in a HGNN is defined as:

X(l+1) = σ(D−1/2
v HWD−1

e HTD−1/2
v X(l)Θ(l)) (3.3)

where X(l) ∈ RNv×C(l) is the signal (i.e., features) of the hypergraph at the l-th layer,

22 Hypergraph Networks

Figure 3.3: Illustration of a single hyperedge convolutional layer from Figure 4 of [Feng et al.,
2019].

Θ(l) ∈ RC(l)×C(l+1) are the weights to be learned, X(l+1) ∈ RNv×C(l+1) is the output of
the hyperedge convolutional layer, and σ is a non-linearity activation function (e.g.
sigmoid, ReLU [Nair and Hinton, 2010]). C(l) and C(l+1) represents the number of
channels (i.e., dimensionality) for the vertex features in the l-th and (l + 1)-th layer,
respectively.

L = D−1/2
v HWD−1

e HTD−1/2
v is called the normalised incidence matrix, as it com-

bines information about the degree of each vertex, the degree and weight of each
hyperedge, and the structure of the hypergraph. If we look closely at the matrix
multiplication between L and X in Equation 3.3, we can observe that a new feature
for each vertex v is computed as a weighted aggregation of its neighbouring vertices
(as determined by the hyperedges that contain v). We refer the reader to Section
10.1 in the Appendix of [Gilmer et al., 2017] for a formal derivation of this reasoning
applied to a Kipf and Welling [2017]’s standard Graph Convolutional Network.

It is important to note that this formulation of a hyperedge convolutional layer is
only defined in terms of undirected hypergraphs. However, our experiments showed
that using HGNNs with directed hypergraphs converted to undirected hypergraphs
yielded admirable results.

The input to the first hyperedge convolutional layer are the initial vertex features
X(1) ∈ RNv×d, where d is the initial dimensionality for each vertex feature. Hence, a
disadvantage of HGNNs is that they do not support hyperedge features as explicit
input to the network. However, a single HGNN layer performs vertex-edge-vertex
transforms which subsequently computes intermediate hidden hyperedge represen-
tations (Figure 3.3).

[Bai et al., 2019] extend HGNNs by introducing a hypergraph attention module
which enhances the representational capability of a network. The attention mech-
anism is used to directly update the incidence matrix, such that each entry now
measures the degree of connectivity between a vertex and a hyperedge rather than a
binary value representing whether a vertex is in a hyperedge or not. Despite being
more expensive to train, the hypergraph attention module can be used to a “learn a

§3.2 Deep Learning on Hypergraphs 23

dynamic connection of hyperedges" which can lead to richer feature embeddings.

Pitfalls

A hyperedge convolutional layer returns vertex-level outputs, and hence cannot be
used to make edge-level predictions. However, the vertex-level outputs can be aggre-
gated to produce a single hypergraph-level output (e.g., by doing a summation of the
node features output by the last layer of the HGNN). That being said, HGNNs are
primarily used to solve semi-supervised node classification problems.

As we have previously discussed in Section 2.2.4, the major disadvantage of
spectral-based graph neural networks is that they usually generalise poorly to hyper-
graphs with a different number of vertices and hyperedges to the ones the network
was trained on. Moreover, spectral-based approaches are inefficient as the convolu-
tions are performed over the whole hypergraph rather than a batch of vertices [Wu
et al., 2019].

Moreover, hyperedge convolutional layers in a HGNN rely on a first-order Cheby-
shev polynomial approximation of the spectral graph convolution, where the eigen-
vectors of the hypergraph Laplacian essentially act as the Fourier bases and the
eigenvalues act as frequencies [Feng et al., 2019]. Not surprisingly, the eigenvectors
and eigenvalues of the hypergraph Laplacian can vary significantly due to pertur-
bations to the hypergraph structure. Hence, we would expect the generalisation
performance of a HGNN to be limited.

3.2.2 HyperGCN

HyperGCN [Yadati et al., 2018] is a spectral-based approach for learning over hyper-
graphs that relies on decomposing the hypergraph into a standard graph. It does this
by “approximating each hyperedge by a set of pairwise edges connecting the vertices
of the hyperedge", and then applying a conventional spectral-based Graph Convolu-
tional Network (GCN) [Kipf and Welling, 2017]. As with HGNNs, HyperGCNs are
only defined for undirected hypergraphs.

Formulation

HyperGCNs first construct a standard weighted graph GS on the vertex set V of a
weighted undirected hypergraph (V , E , w) by using Chan et al. [2018]’s definition of
the Hypergraph Laplacian. The hypergraph Laplacian is a generalisation of the graph
laplacian introduced in Section 2.2.4.

In a HyperGCN, GS is constructed by adding standard edges {ie, je} ⊆ e : e ∈ E
with weights w({ie, je}) = w(e). Recall a hyperedge e is defined as a vertex set. Hence,
a HyperGCN initially decomposes the hypergraph into a standard graph, where each
vertex in a hyperedge e is connected to the other vertices in e through standard edges.

Then, for each hyperedge e at a given epoch τ, HyperGCN selects the single
representative standard edge (ie, je) where the hidden feature representations of ie

and je differ the most. This procedure is called the hypergraph Laplacian. Recall that

24 Hypergraph Networks

Figure 3.4: Illustration of a single convolution on a vertex v using HyperGCN for epoch τ
(Figure 1 in [Yadati et al., 2018]). Θ is a trainable weight matrix, A is the normalised adjacency
matrix of the standard graph obtained from decomposing the hypergraph, and hi and hj are
the hidden representations of the vertices ie and ij, respectively. For each hyperedge e at a
given epoch τ, HyperGCN selects the standard edge where the hidden representations of
the vertices differ the most, as defined by the equation given in the ‘hypergraph Laplacian
operator’ step. HyperGCN then applies a standard Graph Convolutional layer over the
resulting graph.

an epoch refers to a single pass of the data set and the associated weight updates to
the HyperGCN. Hence, the representative edges which are selected by a HyperGCN
may vary across epochs as the hidden representations of the vertices evolve over time.

Now, HyperGCN applies a standard GCN over the resulting graph. These steps
are depicted in Figure 3.4. Evidently, the selected edge may not be representative
of the hyperedge which it was constructed from, and hence we may expect the
representational capability of a HyperGCN to be limited in comparison to that of
HGNNs.

Yadati et al. [2018] address this issue by introducing "mediators", where for the sin-
gle representative edge (ie, je) for each hyperedge e, new edges {(ie, k) : k ∈ e s.t. k 6=
ie ∧ k 6= je} and {(je, k) : k ∈ e s.t. k 6= ie ∧ k 6= je} are connected and added to the
resulting graph to be processed by the GCN. Essentially, each representative edge
(ie, je) is now conditioned on the other vertices in the hyperedge e.

Comparison to HGNNs and Pitfalls

In comparison to HGNNs, which approximate each hyperedge with a clique and
hence require a polynomial number of edges, HyperGCNs only require a linear
number of edges as they select one representative standard edge for each hyperedge.
This leads to faster training time, at the potential loss of representational capability.
However, Yadati et al. [2018] found that HyperGCNs outperformed HGNNs for semi-
supervised node classification and combinatorial optimisation, most likely due to the
removal of noisy hyperedges as a result of this linear approximation.

HyperGCNs and HGNNs both suffer from the issue that their convolutions are
formulated in terms of the spectral-domain of the graph. This means that they usually
generalise poorly to hypergraphs with a different number of vertices and hyperedges
to the ones they were trained on, for the reasons aforementioned at the end of Section

§3.2 Deep Learning on Hypergraphs 25

3.2.1. Moreover, both techniques are only defined for undirected hypergraphs, and
cannot be used to make edge-level predictions as their layers only give vertex-level
outputs.

Despite this, Yadati et al. [2018] found that HyperGCNs were able to generalise
to different sized hypergraphs for the densest k-subhypergraph problem, an NP-hard
problem. Our experiments found that spatial-based hypergraph networks are able to
generalise far better than spectral-based hypergraph networks in terms of planning
performance.

3.2.3 Dynamic Hypergraph Neural Networks

To the best of our knowledge, Dynamic Hypergraph Neural Networks (DHGNN)
[Jiang et al., 2019] is the first hypergraph deep learning framework which utilises
spatial convolutions. A DHGNN is composed of stacked layers, where each layer
consists of a dynamic hypergraph construction (DHG) module and hypergraph con-
volution (HGC) module. DHGNNs are only defined for undirected hypergraphs.
However, unlike HGNNs and HyperGCNs, it is possible to extend DHGNNs to
directed hypergraphs.

In contrast to a spectral convolution which is defined in the spectral domain of
the entire hypergraph, a spatial convolution is defined in terms of the local neigh-
bourhoods of vertices and hyperedges (i.e., batches of vertices and hyperedges). This
allows a DHGNN to generalise to hypergraphs with a different number of vertices
and hyperedges to the hypergraph(s) it was trained on.

The DHGNN framework is most similar to the Hypergraph Networks framework
we will introduce in Section 3.3, than to HGNNs and HyperGCNs. Next, we will
explain the formulation of DHGNNs in more depth. It is important to note that
DHGNN was published in parallel to the development of this thesis.

Dynamic Hypergraph Construction (DHG) Module

The DHG module allows the undirected hypergraph structure to be dynamically
refined as the feature embeddings of the vertices evolve over time, as the initial hyper-
graph may not have been the most suitable representation of the data. Ideally, DHG
will lead to a hypergraph structure that better models the higher-order relationships
in the data.

DHG is most applicable to datasets where the hypergraph structure must be in-
ferred from the data, rather than being explicitly specified. Because of this, DHG is
not applicable for learning heuristics over hypergraphs, as the hypergraph representa-
tion we utilise is explicitly specified by the grounded planning problem. Moreover, as
we will discuss in Chapter 4, learning heuristic over hypergraphs involves estimating
shortest paths rather than explicitly learning feature embeddings.

Let Con(e) = {v1, . . . , vke} and Adj(v) = {e1, . . . , ekv} represent the ke vertices a
hyperedge e contains (vertex set) and the set of hyperedges that contain vertex v
(adjacent hyperedge set), respectively. Moreover, let k = |Con(e)| = ke be the size of

26 Hypergraph Networks

Vertex	Convolution	Module Hyperedge	Convolution	Module

Figure 3.5: The Vertex Convolution module (left) and Hyperedge Convolution module (right)
of a DHGNN. Taken from Figure 3 and 4 of [Jiang et al., 2019].

a new hyperedge e, and S = |Adj(v)| = kv be the size of the new adjacent hyperedge
set of a vertex v in the new hypergraph constructed by DHG.

DHG firstly uses k-nearest neighbours to compute the k− 1 nearest neighbours
for each vertex v. These neighbouring vertices, along with v are used to construct a
new hyperedge for v in Adj(v) which is clearly of size k. Then, DHG uses k-means
clustering to compute n clusters over all the vertex features (where n > S− 1 is a
hyperparameter). For each vertex v, the S− 1 nearest clusters will then be assigned
as adjacent hyperedges of this vertex, and are subsequently added to Adj(v). The
hyperedge for each cluster is constructed by computing the k− 1 nearest vertices to
the cluster centre and appending the current vertex v – clearly the resulting hyperedge
contains k vertices. Evidently, DHG is used to dynamically update the hypergraph
structure by exploiting local structures (through k-nearest neighbours) and global
structures (through k-means clustering). We refer the reader to Algorithm 1 in [Jiang
et al., 2019] for more details.

Hypergraph Convolution (HGC) Module

A HGC module consists of the vertex convolution submodule and the hyperedge
convolution submodule, both depicted in Figure 3.5. Vertex convolution is used to
aggregate vertex features to a hyperedge, while hyperedge convolution is used to
aggregate hyperedge features to a vertex.

Recall that the DHG module dynamically updates the structure of the hypergraph
such that each hyperedge contains k vertices. The vertex convolution module learns
a transform matrix T of size k× k, which is used along with a 1-dimensional convo-
lution operator to transform and compact the k vertex features into a new hyperedge
feature (left diagram in Figure 3.5). Vertex convolution is used to compute the new
feature xe for each hyperedge e ∈ E in the hypergraph by enabling “inter-vertex and
inter-channel information" flow.

In terms of implementing vertex convolution, a Multilayer Perceptron (MLP)
is used to generate this transform matrix T from the sampled vertex features Xv

(concatenated vertex features) for a hyperedge e, i.e. T = MLP1(Xv). Then, a 1-

§3.2 Deep Learning on Hypergraphs 27

dimensional convolution is applied to the result of the transform matrix multiplied
by the hidden representation of the vertex features in order to get the new hyperedge
feature, xe. That is, xe = conv_1d(T · MLP2(Xv)) where MLP2 is a MLP used to
compute the hidden representation of the vertex features Xv

The hyperedge convolution module employs an attention mechanism, in which
the new feature xv of a vertex v is computed as a weighted sum of the adjacent
hyperedge features Xe (i.e., the concatenated features of the hyperedges that contain
v). Each weight of a hyperedge can be viewed as the ‘importance’ that hyperedge
has to contributing to the vertex feature (right diagram in Figure 3.5). Hyperedge
convolution is applied to compute a new feature xv for each vertex v ∈ V in the
hypergraph.

In terms of implementation, a MLP with a Softmax is used to compute the nor-
malised weight scores w for the S adjacent hyperedges, i.e. w = so f tmax(MLP(Xe)).
These weights are then used to compute the new feature xv for a vertex v, by comput-
ing a weighted sum over the features for each hyperedge xe. That is, xv = wTXe.

For more details regarding the HGC module, we refer to reader to Algorithm 2
in [Jiang et al., 2019]. It is evident that HGCs, and hence DHGNNs, are defined in
terms of spatial convolutions not spectral convolutions, and hence are expected to
have better generalisation performance.

Pitfalls

A DHGNN layer, as defined by Jiang et al. [2019], only returns vertex-level outputs.
This can be attributed to the fact that DHGNNs are designed mainly for performing
semi-supervised node classification. However, DHGNNs are extensible to support
hyperedge-level outputs by storing the explicit results of the vertex convolution mod-
ule. This is in contrast to HGNNs and HyperGCNs which cannot practically support
hyperedge-level outputs as they operate on the incidence matrix of a hypergraph.

A disadvantage of the vertex convolution module is that it only uses the vertex set
features to compute a new hyperedge’s feature, and hence ignores the hyperedge’s
current embedding. Similarly, the hyperedge convolution module only uses the
adjacent hyperedge features to compute a new vertex feature, and hence ignores the
current embedding of the vertex.

Once again, these disadvantages can be attributed to the fact that for most semi-
supervised node classification tasks, the hypergraph structure must be inferred from
the data rather than being explicitly specified, and hence the structure may be dy-
namically updated. Thus, DHGNNs are likely to be unsuitable for the majority of
combinatorial optimisation problems, where the hypergraph structure is explicitly de-
fined (e.g., computing shortest paths over hypergraphs) and hyperedge-level outputs
may be required.

28 Hypergraph Networks

3.2.4 Other Related Work

Learning over hypergraphs was first formally introduced in the seminal work [Zhou
et al., 2007], where the authors introduced spectral hypergraph clustering and em-
bedding techniques using the hypergraph Laplacian. However, this approach is
computationally inefficient in comparison to HGNN and HyperGCN, which adopt
a more efficient Chebyshev expansion of this Laplacian and an approximation of a
hyperedge by a set of pairwise edges, respectively.

Xu et al. [2018] view ordered binary decision diagrams as 3-uniform hypergraphs,
where each hyperedge must contain exactly 3 vertices. They then decompose 3-
uniform hypergraph message passing into two ordinary message passing steps in a
Message Passing Neural Network (MPNN) [Gilmer et al., 2017], which is designed for
ordinary graphs. Their results show that the resulting MPNNs can find near optimal
solutions in a short amount of time.

Yadati et al. [2019] propose Neural Hyperlink Predictors (NHP), which are based
on Graph Convolutional Networks (GCNs), for hyperlink prediction. Hyperlink
prediction is concerned with predicting the probability of a future possible link (i.e.,
a new hyperedge). NHPs use the clique expansion of the dual of a hypergraph to
approximate it as a planar graph, and then use conventional GCNs.

3.3 Hypergraph Networks (HGNs)

As briefly mentioned in Section 2.2.4, Graph Networks (GN) [Battaglia et al., 2018] is
a framework capable of defining and extending the majority of existing graph neural
networks. We propose Hypergraph Networks, our generalisation of Graph Networks
to hypergraphs. Since hypergraphs are generalisations of standard graphs, all the
models that may be represented using Graph Networks may also be represented
using Hypergraph Networks.

Hypergraph Networks can be used to represent both spectral-based and spatial-
based hypergraph neural network models, but are focused on representing the latter.
HGNs may be considered as message-passing models, where information flows be-
tween the hyperedges and vertices based on the structure of a hypergraph in each
message-passing step.

Hypergraph Networks (HGNs) are designed to have extremely flexible building
blocks which exploit the relational structure of hypergraphs. In the subsections that
follow, we will define the representation of a hypergraph in a HGN, the HGN block,
and argue for the relational inductive biases that rise from HGNs.

3.3.1 Hypergraph Representation

Unlike HGNNs, HyperGCNs and DHGNNs which were presented in Section 3.2, the
Hypergraph Networks framework is explicitly designed for directed hypergraphs.
It is easy to extend HGNs to undirected hypergraphs. From this point onwards,

§3.3 Hypergraph Networks (HGNs) 29

we assume that a hypergraph is a directed hypergraph. When a hypergraph is not
directed, we will explicitly state that it is an undirected hypergraph.

The following hypergraph representation is a modification of the representation
for standard graphs presented in [Battaglia et al., 2018]. As such, we preserve the
naming of most variables. A hypergraph in the HGN framework is a triple G =
(u, V, E) where:

• u represents the global attributes of the hypergraph (i.e., hypergraph-level at-
tributes).

• V = {vi : i ∈ {1, . . . , Nv}} is the set of Nv vertices, where vi represents the i-th
vertex’s attributes.

• E = {(ek, Rk, Sk) : k ∈ {1, . . . , Ne}} is the set of Ne hyperedges, where:

– ek represents the k-th hyperedge’s attributes,

– Rk ⊆ V is the vertex set which contains the indices of the vertices which
are in the head of the k-th hyperedge (i.e. receivers), and

– Sk ⊆ V is the vertex set which contains the indices of the vertices which
are in the tail of the k-th hyperedge (i.e. senders).

An example of a hypergraph in the HGN framework representation is depicted
in Figure 3.6.

Note, that the size of Rk and Sk varies depending on the number of vertices
in the head and tail of the k-th hyperedge. This representation is in contrast to
Graph Networks, where receivers and senders are only defined for a single vertex.
Consequently, all graphs that may be defined using the graph representation in Graph
Networks, may also be defined in our hypergraph representation. We can simply set
Rk = {rk} and Sk = {sk} for the k-th edge, where rk is the index of the receiver vertex,
and sk is the index of the sender vertex.

3.3.2 Hypergraph Network (HGN) Block

A Hypergraph Network block is a hypergraph-to-hypergraph function which forms
the core building block of a HGN. The internal structure of a full HGN block is identi-
cal to that of a GN block [Battaglia et al., 2018], except now the edge update function
φe must supports multiple receivers and senders. HGN blocks are designed to be
configurable to the task at hand, whether it be semi-supervised node classification or
combinatorial optimisation.

A full HGN block is composed of three update functions, φe, φv and φu, and three
aggregation functions, ρe→v, ρe→u and ρv→u:

e′k = φe(ek, Rk, Sk, u)

v′i = φv(e′i, vi, u)

u′ = φu(e′, v′, u)

e′i = ρe→v(E′i)

e′ = ρe→u(E′)

v′ = ρv→u(V ′)

(3.4)

30 Hypergraph Networks

vi
u

ek

u

vi

vs1

vs2

...

vr1

vr2

...

ek

Attributes

Sk Rk

Sk Rk

Figure 3.6: Example of a Hypergraph represented in a Hypergraph Network (adaptation of
Figure 2 from Battaglia et al. [2018]). The attributes are properties of the entity it represents,
and could be encoded as vectors, matrices, sets, etc.

where Rk = {vj : j ∈ Rk} and Sk = {vj : j ∈ Sk} are the sets which represent the vertex
features of the receivers and senders of the k-th hyperedge, respectively. Additionally,
for the i-th vertex, we define E′i = {(e′k, Rk, Sk) : k ∈ {1, . . . , Ne} s.t. i ∈ Rk}, V ′ =
{v′i : i ∈ {1, . . . , Ne}}, and E′ =

⋃
i E′i = {(e′k, Rk, Sk) : k ∈ {1, . . . , Ne}}. Essentially, E′i

represents the hyperedges where the i-th vertex is a receiver vertex (i.e., in the head
of the hyperedge), E′ represents all the hyperedges, and V ′ represents all the vertices.

Since the input to the aggregation functions are essentially sets, each ρ must be
permutation invariant to ensure that all permutations of the input give the same
aggregated result. Hence ρ could, for example, be a function that takes an element-
wise summation of the input, maximum, minimum, mean, etc [Battaglia et al., 2018].

Computation Steps

The hyperedge update function φe computes the updated hyperedge attribute e′k
using the current hyperedge’s attributes, the attributes of the receiver and sender
vertices, and the global attributes. The vertex update function φv computes the
updated vertex attribute v′i using the aggregated information from all the hyperedges
it ‘receives’ a signal from (i.e., it appears in the head of the hyperedge), the current
vertex’s attributes, and the global attributes. Finally, the global update function φu

computes the updated global attributes using the aggregated information from all the
hyperedges and vertices in the hypergraph, along with the current global attributes.

In a single pass of a HGN block, the hyperedge update function φe is applied to all
the hyperedges to compute per-hyperedge updates, then the vertex update function
φv is applied to all the vertices to compute per-vertex updates, and lastly, the global
update function φu is applied once to compute the new global attributes [Battaglia

§3.3 Hypergraph Networks (HGNs) 31

Algorithm 1 Computation steps in a full HGN block. Adapted from Algorithm 1 in
[Battaglia et al., 2018].

1: function HypergraphNetworkBlock(u, V, E)
2: for k ∈ {1, . . . , Ne} do
3: . 1. Compute updated hyperedge attributes
4: e′k ← φe(ek, {vj : j ∈ Rk}, {vj : j ∈ Sk}, u)

5: for i ∈ {1, . . . , Nv} do
6: . 2. Aggregate hyperedge attributes for vertex
7: E′i ← {(e′k, Rk, Sk) : k ∈ {1, . . . , Ne} s.t. k ∈ Rk}
8: e′i ← ρe→v(E′i)
9: . 3. Compute updated vertex attributes

10: v′i ← φv(e′i, vi, u)

11: . 4. Aggregate hyperedge attributes globally
12: E′ ← {(e′k, Rk, Sk) : k ∈ {1, . . . , Ne}}
13: e′ ← ρe→u(E′)
14: . 5. Aggregate vertex attributes globally
15: V ′ ← {v′i : i ∈ {1, . . . , Ne}}
16: v′ ← ρv→u(V ′)
17: . 6. Compute updated global attribute
18: u′ ← φu(e′, v′, u)
19: return (u′, V ′, E′)

et al., 2018]. Algorithm 1 describes these updates in more detail.
In contrast to the edge update function φe in a GN block, φe in a HGN block

should be able to compute an update based on a variable number of sender and
receiver vertex attributes, even if it does not use all these attributes. For example,
the φe update in a HGN may be implemented as a function which firstly samples
n sender vertex features from Sk, and m receiver vertices Rk (to ensure fixed vector
sizes), and then applies a standard neural network such as a MLP over the resulting
features.

3.3.3 Relational Inductive Biases and Combinatorial Generalisation

Recall from Section 2.2.3 that relational inductive biases are the inductive biases which
impose constraints on the relationships and interactions of the entities in a learning
algorithm [Battaglia et al., 2018].

Hypergraph Networks impose a stronger form of relational inductive biases than
Graph Networks, as hyperedges allow us to model interactions between multiple
entities using a single relationship. In contrast, Graph Networks only allow us to
model interactions between exactly two entities in a single relationship through a
standard edge. Thus, hypergraphs allow us to express arbitrary relationships be-
tween entities, while graphs only allow us to express pairwise arbitrary relationships
between entities [Battaglia et al., 2018].

Additionally, the input to a Hypergraph Network (i.e. the hypergraph structure

32 Hypergraph Networks

itself) determines how the entities interact, not the architecture of the framework. A
hyperedge connecting a set of entities indicates that the entities should interact, while
the absence of a hyperedge between a set of entities indicate that they are isolated
from each other and hence should not interact [Battaglia et al., 2018].

HGNs are invariant to permutations in the ordering of vertices and hyperedges in
a hypergraph, as these entities are expressed as sets within the framework. Of course,
the invariance of a specific instance of a HGN relies on how the update functions
are implemented. For example, if the implementation of an update function assumes
that there is a specific ordering in the vertex or hyperedge features it receives, then
the resulting HGN will not be invariant.

The inherent design of HGNs means that they are able to support combinatorial
generalisation, since they apply per-hyperedge and per-vertex updates across all
hyperedges and vertices in the hypergraph, respectively. This means that a HGN can
scale to hypergraphs with different structures and different numbers of vertices and
hyperedges.

3.3.4 Configurable HGN Blocks and Existing Models as HGNs

In this subsection, we discuss how the flexible internal structure of a HGN block may
be modified and configured to suit the task at hand, by depicting how the existing
deep learning hypergraph models presented in Section 3.2 may be defined using
HGNs. Figure 3.7 depicts a full Hypergraph Network block (defined in Section 3.3.2),
where all hypergraph attributes, update functions, and aggregation functions are
utilised.

Edge block Node block Global block

E

V

E'

V'

ϕe

ϕv

ρe→v

u ϕu u'

ρv→u

ρe→u

Figure 3.7: The full Hypergraph Network block configuration which predicts global, ver-
tex and hyperedge outputs based on the incoming global, vertex and hyperedge attributes
[Battaglia et al., 2018]. The incoming arrows to an update function φ represent the inputs it
receives.

Each update function φ in a HGN block, must be implemented by some function
f , where the signature of f determines what input it gets [Battaglia et al., 2018].
For example, the function that implements φe in a full HGN block (Figure 3.7) is
a function f : (ek, Rk, Sk, u) 7→ e′k which accepts the global, vertex, and hyperedge
attributes. Each function f may be implemented in any manner, as long as it accepts
the input parameters and conforms to the required output.

§3.3 Hypergraph Networks (HGNs) 33

Composable HGN Blocks

Since the input and output of a HGN block is a hypergraph, an arbitrary number
HGN blocks can be composed sequentially by passing the output of one block as the
input to another. These blocks can either be unshared (each block contains different
update and aggregation functions), or shared (the same block is reused) [Battaglia
et al., 2018]. Multiple compositions of the same shared block may be interpreted as
message-passing [Gilmer et al., 2017], where the identical update and aggregation
functions of the block are applied iteratively to incrementally propagate information
through the hypergraph. This is akin to belief-propagation in Bayesian Networks.

Hypergraph Neural Networks as HGNs

Recall a hyperedge convolutional layer in a HGNN is defined as (Section 3.2.1):

X(l+1) = σ(D−1/2
v HWD−1

e HTD−1/2
v X(l)Θ(l)),

and that HGNNs only support undirected hypergraphs. Let us assume the vertex
set for each hyperedge is encoded in its receiver vertex set (i.e. the sender vertex
set is empty). Now, we can use the senders vertex set Rk of each hyperedge in
{(ek, Rk, ∅) : k ∈ {1, . . . , Ne}} to derive the incidence matrix H, vertex degree matrix
Dv, and the hyperedge degree matrix De. The weight of each hyperedge can be
encoded in its feature ek, and then extracted to get the weight matrix W. However,
since all these matrices stay fixed for a given hypergraph, we only need to compute
L = D−1/2

v HWD−1
e HTD−1/2

v once. Thus, the input edge attributes are not strictly
required as input to the block, as we can encode L in the global attributes u of each
hypergraph, i.e., let u = L.

A hyperedge convolutional layer at the l-th layer can be defined as the HGN block
shown in Figure 3.8. Without a loss in generality, we assume that the vertex update
function computes the update for all vertices V = {vi : i ∈ {1, . . . , Nv}} simultane-
ously (i.e., φv accepts multiple vertices as input, and outputs multiple vertices). Then
we, define:

φv := f v(V, u)

= σ
(

u [v1, . . . , vNv]T Θ(l)
)

= σ
(

D−1/2
v HWD−1

e HTD−1/2
v X(l)Θ(l)

)
,

where σ is the activation function, X(l) = [v1, . . . , vNv]T is the matrix containing the
features of the input vertices V, and Θ(l) is the learnable weight matrix. We use
[x, y, z] to refer to the concatenation of vectors x, y, and z.

It is possible to show that the matrix multiplication between D−1/2
v HWD−1

e HTD−1/2
v

and X computes a new feature for each vertex v by taking a weighted aggregation of
its neighbours, and hence φv may be defined to compute per-vertex updates. How-
ever, for the sake of brevity, we do not derive this relationship as it is not the main

34 Hypergraph Networks

focus for this thesis. We refer the reader to Section 10.1 in the Appendix of [Gilmer
et al., 2017] for a formal derivation of this reasoning applied to a Kipf and Welling
[2017]’s standard Graph Convolutional Network.

Edge block Node block Global block

u

V ϕv

E'

V'

u'

Figure 3.8: A HGNN hyperedge convolutional layer represented as a HGN block. The
dotted line to E′ represents the hidden hyperedge representation which is implicitly com-
puted by the layer’s vertex-hyperedge-vertex transform (Figure 3.3). As the matrix L =

D−1/2
v HWD−1

e HTD−1/2
v stays constant for a given hypergraph, it can be stored in the global

attributes u of the hypergraph and propagated unmodified.

HyperGCN as HGNs

HyperGCNs learn functions over hypergraphs by decomposing the hypergraph into
a standard graph by using the hypergraph Laplacian, and then applying a spectral-
based Graph Convolutional Network. We investigate how 1-HyperGCN, which se-
lects one representative standard edge for each hyperedge in the hypergraph, may be
represented using HGNs (see Section 3.2.2).

We consider the convolutional layer depicted in Figure 3.4, which may be repre-
sented in HGNs using the block configurations shown in Figure 3.9. The hyperedge
update function φe in the hypergraph Laplacian HGN block is implemented as:

φe := f e(Rk, ∅)

= create_edge
(

arg maxvi ,vj∈Rk
||ΘT(vi − vj)||2

)
where Θ is the matrix of weights which need to be learned. Since HyperGCNs are
only defined for undirected hypergraphs, we assume that the vertex set for the k-
th hyperedge is encoded in the receivers Rk (i.e., the senders Sk are empty). It is
important to note that E and E′ are used for the sole purpose of the representing the
(hyper)graph structure, as (Hyper)GCNs only support undirected (hyper)graphs.

The GCN block computes a new feature for each vertex in the standard graph
whose structure is encoded E′ (Figure 3.9). The vertex update function φv is defined

§3.3 Hypergraph Networks (HGNs) 35

Edge block Node block Global block

V

E'ϕeE

Hypergraph Laplacian

Edge block Node block Global block

V''ϕv

Graph Convolutional Network

1-HyperGCN

V'

Figure 3.9: A graph convolution layer in a 1-HyperGCN. The hypergraph Laplacian block
converts the hypergraph into a standard graph by selecting the “most representative" pair of
vertices for each hyperedge. The Graph Convolutional Network computes a new feature for
each vertex in this standard graph. The red update functions across the two blocks indicate
that they share the same weights Θ.

as:

φv := f v(v′i, E′)

= σ

ΘT ∑
vj∈N (vi)

(Ã[i, j] · v′i)

where σ is a non-linear activation function, N (vi) is a function which returns the
neighbours for vi (derived from E′), and Ã is the normalised adjacency matrix of
the graph (derived from E′). Critically, Θ is the same weight matrix used in the
hypergraph Laplacian HGN block. We refer the reader to [Yadati et al., 2018] for
more details regarding this procedure.

Dynamic Hypergraph Neural Networks as HGNs

A DHGNN layer is made up of the Dynamic Hypergraph Construction (DHG) mod-
ule, and the Hypergraph Convolution (HGC) module. We consider how to represent
the HGC module using HGNs, as they define per-vertex and per-hyperedge updates.
In contrast, the DHG module reconstructs the hypergraph using k-Means clustering
and k-nearest neighbours – this procedure is not relevant for this thesis. Figure 3.10
depicts a Hypergraph Convolution (HGC) module.

We define the hyperedge update function φe in the vertex convolution block as:

φe := f e(Rk, ∅)

= conv_1d (MLP1(Rk) ·MLP2(Rk))

36 Hypergraph Networks

Edge block Node block Global block

V

E'ϕeE

Vertex Convolution

Edge block Node block Global block

V''ϕv

Hyperedge Convolution

Hypergraph Convolution Module

Figure 3.10: A DHGNN hypergraph convolution module represented as two sequential HGN
blocks for vertex convolution and hyperedge convolution. The vertex convolution block uses
the vertex features and structure of the hypergraph to compute new hyperedge features.
The hyperedge convolution block uses the hyperedges and structure of the hypergraph to
compute new vertex features.

where Rk = [v1, . . . , vk]
T is the matrix of features for the k vertices in the current k-th

hyperedge’s vertex set. Since DHGNNs are only defined for undirected hypergraphs,
we assume that the vertex set for the k-th hyperedge is encoded in the receivers Rk
(i.e., the senders Sk are empty). MLP1 is a multi-layer perceptron used to generate
the transform matrix for Rk, and MLP2 is used to compute the hidden representation
of Rk. φe is applied to each hyperedge in the hypergraph to compute and output a
new hyperedge feature.

We define the vertex update function φv in the hyperedge convolution block as:

φv := f v(E′i)

= so f tmax(MLP(E′i))
TE′i

where E′i = [e′1, . . . , e′S] are the concatenated features of the S hyperedges in the i-th
vertex’s adjacent hyperedge set derived from the output E′ of the vertex convolution
block (see Figure 3.10). MLP is used to compute the self-attention weights, and
so f tmax is used to normalise the weights to 1. so f tmax(MLP(Ei)) is a vector contain-
ing the normalised weights for each hyperedge, which are used to compute the new
vertex feature by performing a weighted sum over the input hyperedge features E′i.
φv is applied to each vertex in the hypergraph in order to compute and output a new
vertex feature.

Thus, we have shown that it is possible to define the Hypergraph Convolution
modules in a DHGNN as two sequential HGN blocks.

§3.3 Hypergraph Networks (HGNs) 37

3.3.5 Summary

We have introduced Hypergraph Networks, our framework which generalises Graph
Networks [Battaglia et al., 2018] to hypergraphs. We have shown that HGN blocks
are extremely powerful hypergraph-to-hypergraph functions with highly flexible
within-block designs. HGNs may be easily configured to support an array of tasks,
including vertex-level classification, hyperedge-level classification, and combinatorial
optimisation.

We argued that HGNs impose a stronger form of relational inductive biases than
Graph Networks, as hypergraphs can model complex interactions between multiple
entities using a single relationship. On the other hand, graphs are only able to
model pairwise interactions between two entities using a standard edge. Moreover,
HGNs are able to support combinatorial generalisation to hypergraphs with different
structures and different numbers of vertices and hyperedges, as they apply shared per-
hyperedge and per-vertex updates over all hyperedges and vertices in a hypergraph,
respectively.

Finally, we showed that it is possible to model existing of hypergraph deep learn-
ing algorithms as HGNs. In Section 4.2.2 of the next chapter, we present our HGN
architecture which is used to learn heuristics over hypergraphs for planning.

38 Hypergraph Networks

Chapter 4

Learning Heuristics over
Hypergraphs

In Chapter 3, we introduced Hypergraph Networks, a powerful framework for build-
ing deep learning models which operate over hypergraphs. In this chapter, Section 4.1
firstly discusses how the computation of delete-relaxation heuristics can be expressed
as approximations of shortest paths over hypergraphs.

Following this, Section 4.2 will present STRIPS-HGNs, our recurrent encode-process-
decode Hypergraph Network architecture which we use to learn heuristics by approx-
imating shortest paths in latent space. Moreover, we investigate how the input and
output features for a planning problem may be modelled as HGN hypergraphs,
describe the within-block design of our architecture, argue for the combinatorial gen-
eralisation of a STRIPS-HGN, and discuss its limitations. Finally, Section 4.3 frames
learning a heuristic as a regression problem, and presents the training algorithm we
use to generate training samples and optimise the weights of the update functions in
a STRIPS-HGN by using gradient descent.

4.1 Delete-Relaxation Heuristics as Shortest Paths over Hy-
pergraphs

Recall the delete relaxation of a STRIPS problem P = 〈F, O, I, G, c〉, is the STRIPS
problem P+ = 〈F, O′, I, G, c〉, where O′ = {〈Pre(o), Add(o), ∅〉 | o ∈ O} (as defined
in Section 2.1.1).

Hypergraph Generation

We generate the weighted directed hypergraph G = (V , E , w), induced by P+ using
the procedure described in Algorithm 2. Essentially, each proposition in F represents
a vertex in V , and each grounded action o ∈ O′ represents a hyperedge e ∈ E where
Tail(e) = Pre(o) and Head(e) = Add(o). An example of the hyperedge for an action
is depicted in Figure 4.1.

39

40 Learning Heuristics over Hypergraphs

Algorithm 2 Steps for generating the weighted directed hypergraph (V , E , w) from
the delete relaxed STRIPS problem, P+.

1: function GenerateHypergraph(P+ = 〈F, O′, I, G, c〉)
2: V ← F . The vertices of the hypergraph are all the propositions
3: E ← {}
4: w← an empty map
5: . Construct a directed hyperedge e = (Tail(e), Head(e)) for each action
6: for o ∈ O′ do
7: E ← E ∪ (Pre(o), Add(o))
8: w(o)← c(o) . the weight of the hyperedge is the action’s cost
9: return (V , E , w)

PRE1

PRE2

PRE3

EFF1

EFF2

EFF3

EFF4

Directed Hyperedge for action o

Pre(o)
Add(o)

c(o)

Figure 4.1: Example of the hyperedge generated by Algorithm 2 for an action o with 3
preconditions and 4 positive effects, and a cost c(o) = 1.

4.1.1 hmax and hadd as shortest paths over hypergraphs

Let gs(ω) represent the minimum cost required to achieve proposition ω (atom) from
the current state s [Bonet and Geffner, 2001]. gs(ω) is derived by computing the
fixed-point of Equation 4.1, where initially, gs(ω) = 0 if w ∈ s and gs(ω) = +∞
otherwise.

gs(ω) = min
o∈O : ω∈Add(o)

{gs(ω), c(o) + gs(Pre(o))}

= min
e∈E : ω∈Head(e)

{gs(ω), w(e) + gs(Tail(e))}
(4.1)

where gs(Pre(o)) and gs(Tail(e)) represents the cost of achieving the sets of proposi-
tions given by Pre(o) and Tail(e), respectively. Equation 4.1 essentially computes the
minimum cost of achieving a proposition ω, by choosing an action o that adds ω and
minimises the cost of applying o plus the cost of achieving the preconditions of o.

§4.1 Delete-Relaxation Heuristics as Shortest Paths over Hypergraphs 41

We follow Haslum and Geffner [2000]’s notation, and define the cost of achieving
a set of propositions (vertices), ∆ ⊆ F ≡ V , in the state s as:

gs(∆) = ⊕ω∈∆ gs(ω) (4.2)

where ⊕ is an aggregation operator which aggregates the costs of achieving each
proposition ω ∈ ∆. We can now define a heuristic h⊕(s) = gs(G) for the state s,
where G are the goal propositions.

When ⊕ = ∑, then h⊕(s) = hadd(s). Evidently, hadd approximates the cost of
achieving a set of propositions, either the goal set or the preconditions of actions, as
the cost of achieving each proposition in the set independently of the others. This
independence assumption simplifies the computation but does not reflect reality, since
making a proposition ω true might have the side effect of making other propositions
w′ ∈ ∆ also true. Hence, hadd is not admissible as it may overestimate the true cost
of achieving the propositions in ∆. Nevertheless, hadd is informative as the computed
heuristic values provide some information about the cost of achieving each goal
proposition.

When ⊕ = max, then h⊕(s) = hmax(s). It is easy to see that the cost of achieving
the most difficult proposition in a set, either the goal set or the preconditions of
actions, cannot be greater than the cost of achieving all the propositions in ∆. Thus,
hmax is admissible. However, because hmax ignores the costs of achieving the other
goal propositions and other preconditions, it is not as informative as hadd.

Relation to Hypergraphs

The weighted directed hypergraph induced by P+ encapsulates the propositions and
actions required to compute h⊕. Although this hypergraph representation is not
explicitly required for computing h⊕, we theorise that a deep neural network will be
able to learn a better function ⊕ to aggregate the proposition and action features over
the hypergraph structure, in a rich latent feature space.

It is important to note that an efficient implementation of hmax and hadd incre-
mentally generates the hypergraph when computing a heuristic value (in fact, this
generation is implicit), whereas our Hypergraph Networks require the entire hyper-
graph to passed as input to the network for a given state.

Steinmetz and Torralba [2019] presented the first work to formally bridge the
gap between several classes of planning heuristics and hypergraphs. The authors
defined hyperabstractions, which are heuristics based on the fundamental ideas behind
abstraction and critical-path heuristics. We refer the reader to their paper, which was
published in parallel to the development of this thesis, for further details.

42 Learning Heuristics over Hypergraphs

4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuris-
tics

We denote the architecture of our HGNs for learning heuristics over hypergraphs as
STRIPS-HGNs, which we abbreviate to STRIPS-HGN. STRIPS-HGNs are designed
to be highly adaptable to different input features for each proposition and action,
as well as being agnostic to the exact implementation of each update function in its
HGN blocks. This gives us the power to adjust the internal network implementations
based on our desired application.

4.2.1 STRIPS-HGN Hypergraph Representation

Recall that in Section 3.3, we defined a hypergraph under the HGN framework as
a triple G = (u, V, E). Moreover, we discussed the composability of HGN blocks,
which are hypergraph-to-hypergraph functions.

The input to a STRIPS-HGN is a hypergraph Ginp = (uinp, Vinp, Einp) which con-
tains the input proposition and action features for the state s, along with the hyper-
graph structure of the relaxed STRIPS problem P+ = 〈F, O′, I, G, c〉, where:

1. uinp = ∅, as global features are not required as input to a STRIPS-HGN. Never-
theless, it is easy to adapt STRIPS-HGNs to support global features. For exam-
ple, we could supplement a STRIPS-HGN with a heuristic value h(s) computed
by a heuristic h for the state s, such that the network learns an ‘improvement’
on h. This idea is similar to [Gomoluch et al., 2017], where the authors learn
improvements on hFF using a simple MLP.

2. Vinp = {vi : i ∈ {1, . . . , |F|}} contains the input features (as a vector) for the |F|
propositions in the problem. Features for a proposition could include whether
the proposition is true for the current state or goal state, and whether the
proposition is a fact landmark computed by Landmark Count for the state s
[Richter and Westphal, 2010].

3. Einp = {(ek, Rk, Sk) : k ∈ {1, . . . , |O′|}} for the |O′| actions in the relaxed prob-
lem P+. For an action o ∈ O′ represented by the k-th hyperedge:

• ek represents action o’s input features (as a vector), which could include
the cost of the action c(o), and whether the action is in the disjunctive action
landmarks computed by LM-cut for the state s.

• Rk = Add(o) is the vertex set containing the indices of the vertices in the
additive effects of o.

• Sk = Pre(o) is the vertex set containing the indices of the vertices in the
preconditions of o.

The output of a STRIPS-HGN is a hypergraph Gout = (uout, Vout, Eout) where
uout ∈ R1×1 is a 1-dimensional vector with the heuristic value for state s, Vout = ∅,
and Eout = ∅. As the output of a planning heuristic is defined to be a single real
number, it is unnecessary to output any features for Vout and Eout.

§4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuristics 43

Input Hypergraph Construction Algorithm

Let VertexFeature be the function which maps a vertex to a feature based on the
STRIPS problem P and the current state s. Similarly, let HyperedgeFeature be
the function that maps a hyperedge e to a feature based on the STRIPS problem
P, the current state s, and the cost of the action w(e). GenerateHGNHypergraph

in Algorithm 3 describes the formal procedure required to generate an input HGN
hypergraph G.

Algorithm 3 Generating the input hypergraph required by a STRIPS-HGN based on
the STRIPS problem P, and the current state s.

1: function GenerateHGNHypergraph(P, s)
2: . 1. Generate delete-relaxation hypergraph in the mathematical sense
3: P+ ← DeleteRelax(P) . Get delete relaxed STRIPS problem
4: (V , E , w)← GenerateHypergraph(P+) . Defined in Algorithm 2
5: . 2. Compute hypergraph in HGN representation
6: . Compute vertex and hyperedge features based on problem and current state
7: V ← {VertexFeature(v, P, s) : v ∈ V}
8: E← {(HyperedgeFeature(e, P, s, w(e)), Head(e), Tail(e)) : e ∈ E}
9: G ← (∅, V, E) . Global attributes are undefined for STRIPS-HGNs

10: return G

4.2.2 STRIPS-HGN Architecture

A STRIPS-HGN is composed of three main HGN blocks: the encoding, processing
(core), and decoding block. Our architecture follows a recurrent encode-process-decode
design [Hamrick et al., 2018], as depicted in Figure 4.2.

The input hypergraph Ginp is firstly encoded to a latent representation G0
hid by the

encoding block HGNenc at time step t = 0. This allows the network to operate on a
richer representation of the input features in latent space.

Next, the initial latent representation of the hypergraph G0
hid is concatenated

with the previous output of the processing block HGNcore. Initially, when HGNcore

has not been called (i.e., at time step t = 1 just after Ginp has been computed),
G0

hid is concatenated with itself. Note that the hypergraph structure for G0
hid and

Gt−1
hid is identical, because the HGN blocks do not update the senders or receivers

for a hyperedge. Implementation-wise, concatenating a hypergraph with another
involves concatenating the features for each corresponding vertex vi together, and the
features for each corresponding hyperedge ek together (the global attributes are not
concatenated as they are not required as input to a STRIPS-HGN). This results in a
broadened feature vector for each vertex and hyperedge.

The processing block HGNcore, which outputs a hypergraph Gt
hid for each time

step t ∈ {1, . . . , M}, is applied M times with the initial encoded hypergraph G0
hid

concatenated with the previous output of HGNcore as the input (see Figure 4.2).
Evidently, this procedure results in M− 1 intermediate hypergraph outputs, one for

44 Learning Heuristics over Hypergraphs

HGNenc HGNdec

Ginp Gout

HGNcore

x M
GthidGt-1hid

G0hid

Figure 4.2: The architecture for a STRIPS-HGN, which uses a recurrent “Encode-process-
decode" architecture (modified from Figure 6c in [Battaglia et al., 2018]). The merging line
for G0

hid and Gt−1
hid indicates concatenation, while the splitting lines that are output by the

HGNcore block indicates copying (i.e., the same output is passed to different locations). The
grey dotted line indicates that the output Gt

hid is used as input to the HGNcore block in the
next time step t + 1.

each for time step t ∈ {1, . . . , M − 1}, and one final hypergraph for the time step
t = M.

The decoding block takes the hypergraph output by the HGNcore block, and
decodes it to the hypergraph Gout which contains the heuristic value for state s in the
global attribute uout. Observe that we can decode each latent hypergraph which is
output by HGNcore to obtain a heuristic value for each time step t ∈ {1, . . . , M}. This
fact will be exploited in our training algorithm, which is introduced in Section 4.3.

Core Block Details

We can interpret a STRIPS-HGN as a message passing model which performs M
steps of message passing, as the shared processing block HGNcore is repeated M
times using a recurrent architecture. Although this means that a vertex only receives
a ‘signal’ from other vertices at most M hops away1, we theorise that this is sufficient
to learn a powerful function which aggregates proposition and action features in
latent space.

Of course, we can solve this issue by setting M to be an arbitrarily large. However,
this would make the network expensive to evaluate and unfeasible to apply to plan-
ning. In practice, we found that setting M = 10 was sufficient to achieve promising
results.

Gilmer et al. [2017] propose a potential solution to this problem by creating a new
“master" vertex which is connected to every other vertex in the hypergraph with a
special hyperedge type. This master vertex, which would have a very high feature
dimensionality, would act as a global scratch space for vertices to read and write to

1A hop represents a single crossing of a hyperedge (disregarding a hyperedge’s weight).

§4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuristics 45

in each step of message passing. This would in theory, allow signals to “travel long
distances" even for a small number of message passing steps [Gilmer et al., 2017]. We
did not experiment this approach due to the higher costs of training and evaluation,
and the difficulties we encountered implementing it. We leave the investigation of
the master vertex design for future work.

In contrast to neural network architectures such as Action Schema Networks
[Toyer et al., 2019] and CNNs, which have a fixed receptive field that is determined
by the number of hidden layers, the receptive field of a STRIPS-HGN is determined
by the number of message passing steps. Evidently, we can increase or decrease the
receptive field of a STRIPS-HGN by scaling the number of message passing steps,
hence providing a significant advantage over networks with fixed receptive fields.

Within-Block Design

The encoder block (Figure 4.3a), HGNenc encodes the vertex and hyperedge input fea-
tures independently of each other using its φv and φe update functions, respectively.

Edge block Node block Global block

E	
thid

V	
thid

ϕu uout

Edge block Node block Global block

Einp

Vinp

E	
0
hid

V	
0hid

ϕe

ϕv

(a)	Encoder	HGN	Block (b)	Decoder	HGN	Block

u	
thid

Figure 4.3: The Encoding and Decoding blocks of a STRIPS-HGN. An encoder block indepen-
dently encodes the vertex and hyperedge features into latent space, while the decoder block
decodes the latent global features into a single heuristic value. Figure 4.2 shows how these
blocks are used by a STRIPS-HGN in relation to the core processing block.

The core processing block of a STRIPS-HGN (Figure 4.4) takes the concatenated
vertex and hyperedge features from the latent hypergraphs G0

hid and Gt−1
hid as input.

The hyperedge update function φe computes per-hyperedge updates based on these
hyperedge and vertex features. The vertex update function φv computes per-vertex
updates based on the vertex features and the aggregated features of the hyperedges
where the vertex is a receiver, which is computed using ρe→v. Finally, the global
update function φu uses the aggregated vertex and aggregated hyperedge features
calculated with ρe→v and ρe→u, respectively, to compute a latent representation for
the heuristic value.

Evidently, the global features from the previous timestep are not used by the
HGNcore block. We adopt this design as we believe the latent representation of
the heuristic value should be computed based solely on the vertex and hyperedge
features, which incrementally become more informative as we perform more rounds

46 Learning Heuristics over Hypergraphs

Core	HGN	Block

Edge block Node block Global block

ϕe

ϕv

ρe→v

ϕu

ρv→u

ρe→u

u	
t-1hid

V	
t-1hid]

E	
t-1
hid]

u	
thid

V	
thid

E	
thid[E	

0
hid		,

[V	
0hid		,

u	
0
hid	=	∅

Figure 4.4: The Core processing block of a STRIPS-HGN, which computes per-hyperedge
and per-vertex updates using the concatenated input hypergraph. The processing block
additionally computes the global attribute ut

hid using the aggregated vertex and hyperedge
features. ut

hid represents the latent features for the heuristic value. The global attribute
ut−1

hid computed in the previous time step is not used by the core block. [x, y] refers to the
concatenation of x and y. Figure 4.2 depicts how the core block is used by a STRIPS-HGN in
relation to the encoder and decoder blocks.

of message passing. Additionally, the global features are undefined for the initial
latent hypergraph G0

hid.
The decoder block (Figure 4.3b) takes the latent representation of the global at-

tributes ut
hid of the hypergraph returned by the core HGN block, and uses the φu

update function to decode it into a one-dimensional heuristic value. The vertex and
hyperedge features are not used, as ut

hid already represents an aggregation of these
features as computed by HGNcore.

The choice of learning model for the update functions φe, φv and φu for each block
is not strict, as long as the model conforms to the input and output requirements.
The choice of aggregation functions ρe→v, ρe→u, and ρv→u should be permutation
invariant to the ordering of the inputs. We detail our choice of update and aggregation
functions in Section 5.1.2, which describes our experimental setup.

Adapting STRIPS-HGNs to Learning Actions

Although STRIPS-HGNs are designed for learning heuristics, the flexibility of the
HGN framework means that we can easily adapt them to learn which action to apply
for a state s instead. We describe how this could be achieved.

We maintain the same input HGN hypergraph design as described in Section
4.2.1. However, we redefine the output hypergraph to be Gout = (uout, Vout, Eout)
where uout = ∅, Vout = ∅, and Eout = {(eout

k , ∅, ∅) : k ∈ {1, . . . , |O|}} with each
eout

k ∈ R1×1 representing the probability of selecting the action represented by the
hyperedge in state s.

The within-block design of the core block is updated to remove the need to output
the global feature ut

hid, which was previously used to represent the latent representa-
tion of the heuristic value. The decoder block now decodes the hyperedge features

§4.2 STRIPS-HGNs: a Hypergraph Network for Learning Heuristics 47

Et
hid into a probability distribution which represents the confidence the network has

in applying each action. Similar to Action Schema Networks (ASNets) [Toyer et al.,
2019], the decoder block would apply a masked softmax activation function to remove
actions which are not applicable for the state s (i.e. set them to have a probability of
0), and to normalise the probability distribution to 1.

However, as discussed in the motivation behind this thesis in Chapter 1, learning
heuristics is a more robust approach than learning actions, as combining a heuris-
tic with a search algorithm provides formal guarantees. Although it is possible to
plug a hypervisor on top of a learning algorithm which outputs action probability
distributions, as Shen et al. [2019] did with Monte-Carlo Tree Search and ASNets,
learning heuristics generally provides a more efficient and lighter layer of reasoning
to a search algorithm.

4.2.3 Combinatorial Generalisation

As briefly discussed in Section 3.3.5, the inherent design of a HGN supports combi-
natorial generalisation. Rather than applying a fixed transformation over the entire
hypergraph, a STRIPS-HGN applies shared computations over each vertex through
the update functions φv, and shared computations over each hyperedge through the
update functions φe [Battaglia et al., 2018].

Because of this, we would expect that a STRIPS-HGN is able to generalise to plan-
ning problems (and hence hypergraphs) of different sizes to the ones it was trained
on. Indeed, we found this was the case for several of the domains we experimented
on, as we will present in our experimental results in Section 5.3.2.

In the case of training and testing a STRIPS-HGN on problems from a single
domain, we theorise that the network is able to learn patterns in the latent represen-
tations of the vertices and hyperedges in local neighbourhoods of a hypergraph. This
helps it determine how critical the actions in the neighbourhood may be in reaching
the goal state, and subsequently how much of the ‘signal’ should be transmitted from
this neighbourhood through message passing.

As we will show in Section 5.3.3, a single STRIPS-HGN may be trained on small
problems from several domains, and is able to generalise to larger problems from the
same collection of domains it was trained on. Moreover, it is possible for a single
STRIPS-HGN to generalise to problems from different domains to the domains it was
trained on. In the latter scenario, we believe a STRIPS-HGN provides a ‘ranking’ of
which actions will lead us closer to the goal rather than providing accurate heuristic
values, as the latent vertex and hyperedge features may not be extremely informative
for the domains we did not train the network on.

4.2.4 Limitations of STRIPS-HGNs

One significant limitation of STRIPS-HGNs is that it is expensive to compute a single
heuristic value for a state, given the cost of the high dimensional matrix operations
required by each HGN block. Moreover, the computation cost of a STRIPS-HGN

48 Learning Heuristics over Hypergraphs

scales with the size of the hypergraph, as messages need to be broadcasted to more
vertices and hyperedges. However, if the heuristic learned by a STRIPS-HGN is
very informative and provides estimates near the optimal heuristic h∗, then this cost
would pay off if it reduces the total time required for a search algorithm to find a
near-optimal solution in comparison to using hadd, hmax, and LM-cut.

The number of message passing steps M for the core HGN block is a hyperparam-
eter which, in theory, should be selected based on how ‘far’ away the current state
is from the goal. However, determining a good value for M this is not trivial, and
would likely require computing an existing planning heuristic or a relaxed plan. This
would further increase the computational cost required to obtain a heuristic estimate
for a STRIPS-HGN. Ideally, we would want to embed a procedure into STRIPS-HGNs

which is able to automatically select the number of message passing steps based on
the convergence of the heuristic values output by the network at each time step.

Finally, we are unable to provide any guarantees that the heuristics learned by
STRIPS-HGNs are admissible. Although we train STRIPS-HGNs on the optimal
heuristic values, it is unfeasible to analyse a network to understand what it is exactly
computing.

4.3 Training Algorithm

Framing the Learning Problem

We frame learning a heuristic function h as a regression problem, where the heuristic
function ideally provides near-optimal estimates of the cost to go. Although our
experiments showed that the learned heuristics occasionally gave abnormal values
when generalising to problems of significantly larger sizes than those a STRIPS-HGN
was trained on, the heuristic values still provide enough information that A* finds a
near-optimal plan. For example, we observed that when generalising to very large
problems, h(s) > 999999 for all states s in a problem, almost as if the original heuristic
was scaled by a constant factor.

Garrett et al. [2016] explicitly framed learning a heuristic as learning to rank
states, as they focused on Greedy Best-First Search which is agnostic to the actual
magnitude of the heuristic values. The authors argued that search performance is
governed mostly by the ordering of the states induced by the heuristic, rather than
the actual values of the heuristic. Although we observed that this was indeed true, we
believe the values of the heuristic still provide important information which increases
the probability of a search algorithm finding a near-optimal plan, potentially by
providing some unprovable form of admissibility.

It is also possible to frame learning a heuristic as a classification problem, where
a separate class is defined for each natural number up to a heuristic value limit.
However, a classification-based approach would be more expensive to train given the
higher-dimensionality output which is required. Moreover, the heuristic estimates are
limited by the total number of classes, meaning that a classification-based approach

§4.3 Training Algorithm 49

would be unable to generalise as well to larger problems compared to a regression-
based approach.

4.3.1 Training Data Generation

We train our STRIPS-HGNs with the values generated by the optimal heuristic h∗.
Algorithm 4 describes the training data generation procedure for a set of training
problems {P1, . . . , Pn}.

Algorithm 4 Generating training data for a set of STRIPS problems {P1, . . . , Pn}.
1: function GenerateTrainingData({P1, . . . , Pn})
2: T ← {} . Set of tuples with (hypergraph, heuristic value)
3: for Pi ∈ {P1, . . . , Pn} do
4: . Compute the states of the optimal plan for the problem P
5: s0, . . . , sN ← ComputeOptimalPlan(P) . s0 is the initial state
6: for j ∈ {0, . . . , N} do
7: . Append new training pair (hypergraph, heuristic value)
8: G ← GenerateHGNHypergraph(Pi, sj) . Defined in Algorithm 3
9: T ← T ∪ (G, N − j) . h∗(sj) = N − j as we assume unit action costs

10: return T

For a set of planning problems, we firstly compute the optimal plan for each
problem using any method (e.g., a dedicated solver for a domain, or A* with an
admissible heuristic), and generate the trajectory of states s0, . . . , sN by executing the
plan from the initial state s0.

Recall that we assume actions have unit cost. Subsequently, the N − j for each
sj ∈ [s0, . . . , sN] represents the optimal heuristic value h∗(si). Although we assume
unit costs, our training data generation algorithm may be easily extended to actions
with different costs.

It is important to note that we can train STRIPS-HGNs to also learn hmax and hadd,
with the subsequent learned heuristic achieving similar performance to the heuristic
it was trained on. However, this is redundant as a STRIPS-HGN which is trained to
learn the optimal heuristic h∗ achieves significantly better planning performance than
a network trained to mimic hmax and hadd.

4.3.2 STRIPS-HGN Weight Optimisation

After generating the training data T , we use supervised learning to optimise a STRIPS-
HGN. Algorithm 5 describes our training procedure, which we explain in detail
below.

We assume that the implementation of each update function in the encoder, core,
and decoder blocks of a STRIPS-HGN has some weights that need to be learned. For
example, if we implemented each update function as a Multilayer Perceptron (MLP),
the weights would be the weighted connections between each neuron in one layer and

50 Learning Heuristics over Hypergraphs

Algorithm 5 Algorithm for optimising the weights θ of the update functions in a
STRIPS-HGN.

1: procedure Train-STRIPS-HGN(T)
2: θ ← InitialiseWeights()
3: epoch← 0
4: while epoch < Max-Epochs and max training time not exceeded do
5: . Randomly sample minibatches of size Batch-Size from T
6: for B ∈ SampleMinibatches(T , Batch-Size) do
7: Update θ using dLθ(B)

dθ (Equation 4.3)

the neurons in the next layer (as depicted in Figure 2.1). For simplicity, we aggregate
the weights of all update functions into a single variable θ.

Additionally, the weights may need to be initialised depending on the choice of
model implementation. For a MLP, this would involve setting small random weights
to ensure that a STRIPS-HGN does not get stuck in a local optima during training.

Since we framed learning a heuristic as a regression problem, we aim to minimise
the mean squared error (MSE) loss function during training. The MSE calculates the
squared difference between the optimal heuristic value and the heuristic estimate
computed by the STRIPS-HGN.

Let hθ be the heuristic learned by a STRIPS-HGN which is parameterised by
the weights θ. Recall that we can decode the latent hypergraph that is output by
the core HGN block in each time step t ∈ {1, . . . , M} into a heuristic value. We
denote the heuristic value output by a STRIPS-HGN after t time steps as hθ

t . Our
training algorithm averages the losses of the intermediate outputs at each time step
to encourage a STRIPS-HGN to find a good heuristic value in the smallest number of
message passing steps possible [Battaglia et al., 2018]. Now, the MSE loss function is
defined as:

Lθ(B) =
1
|B| ∑

(G, h∗(G))∈B

1
M ∑

t∈{1,...,M}

(
hθ

t (G)− h∗(G)
)2

(4.3)

where B ⊆ T is a minibatch within the entire training dataset T , M is the number of
processing steps for the core HGN block, G is the input HGN hypergraph, and h∗(G)
is the optimal heuristic value for the state represented by the hypergraph G.

At each optimisation step for a minibatch within an epoch, we use the gradient
of the MSE loss function dLθ(B)

dθ to update the weights θ in the direction that min-
imises the Lθ using an optimiser such as Adam [Kingma and Ba, 2014]. This weight
update strategy is called minibatch stochastic gradient descent, and is applied to all the
minibatches of T for a given epoch.

Recall than an epoch refers to a single pass over all the samples in the training
dataset T . We repeatedly update the weights until we reach a maximum number of
epochs Max-Epochs, or until the maximum training time is exceeded.

Finally, after we have finished training a STRIPS-HGN, we can compute a heuristic
value for a new problem P and state s by passing the hypergraph generated by

§4.3 Training Algorithm 51

GenerateHGNHypergraph (see Algorithm 4) to the network. We use the output
of the decoding block after the last message passing step at time step t = M, as the
heuristic value.

Minibatch Stochastic Gradient Descent (SGD)

Minibatch SGD updates the weights of a STRIPS-HGN based on the gradients com-
puted from a small subset of the entire dataset B ⊆ T , which is called a minibatch
[Li et al., 2014]. This stands in contrast to batch gradient descent, which updates the
weights based on the gradients computed over the entire dataset T (i.e., a batch size
of |T |). Computing the gradient over the entire dataset is not only computationally
expensive, but also results in the slow convergence of the loss function.

On the other hand, vanilla stochastic gradient descent (SGD) updates the weights
based on the gradient computed over a single sample in T (i.e., a batch size of 1).
Although plain SGD allows the loss function to converge very quickly, the updated
weights can contain a substantial amount of noise if proper regularisation techniques
are not applied.

In comparison to batch gradient descent and vanilla SGD, Minibatch SGD is
designed to provide a good trade off between convergence speed and minimising
noise in the trained model. Despite this, our experiments found that a batch size of 1
resulted in a trained STRIPS-HGN with the best planning performance, for reasons
that will be explained in Section 5.1.

52 Learning Heuristics over Hypergraphs

Chapter 5

Empirical Evaluation

In Chapter 4, we presented the architecture of STRIPS-HGNs, our Hypergraph Net-
work for learning heuristics over the hypergraph induced by the delete relaxation
of a planning problem. Moreover, we discussed our training data generation proce-
dure, and our algorithm for optimising the weights of the update functions within a
STRIPS-HGN.

Now, we will train our STRIPS-HGNs on a variety of planning domains to evaluate
their efficacy in comparison to the baseline heuristics hadd, hmax and LM-cut. Our
results demonstrate that the heuristics we learn can significantly reduce both the
number of heuristic calls and search time, whilst maintaining near-optimal solutions.

Section 5.1 will discuss our experimental setup, including the spatial-based and
spectral-based HGN configurations we use, the invariance of these networks, and
our stratified k-fold training procedure which aims to restrict noise and demonstrate
robustness over the generated training sets. Section 5.2 will then examine the domains
we train and evaluate our HGNs on, while subsequent sections will present and
analyse the results of our experiments.

5.1 Experimental Setup

Our experiments are aimed at showing the generalisation capability of STRIPS-HGNs

to problems they were not trained on. For each experiment, we select a small pool of
training problems (potentially from several domains) and train a STRIPS-HGN. We
then evaluate the learned heuristic on a larger pool of testing problems with differing
initial/goal states, problem sizes and even domains. Unless otherwise specified, we
repeat each experiment 10 times, resulting in 10 different trained networks. This is
done to minimise the influence of the randomly generated problems and the training
procedure.

The rest of this section discusses the search and STRIPS-HGN configurations, our
training procedure, and how the plots of our results may be interpreted.

53

54 Empirical Evaluation

Hardware

All experiments were conducted on a Amazon Web Services c5.2xlarge server with
an Intel Xeon Platinum 8000 series processor with 4 physical cores (8 logical cores),
and 16GB of RAM. Each experiment was limited to a single physical core with a turbo
clock frequency of 3.4Ghz. We did not set a limitation on the amount of memory an
experiment used, however, as we observed each experiment never exceeded 2GB.

5.1.1 Search Configuration

We evaluate the heuristics learned by our HGNs on A* search as they were trained on
the optimal heuristic values. Although it is possible to use Greedy Best-First Search
(GBFS) which only considers the ranking of states [Pearl, 1984], we believe that the
heuristic estimates are still informative for A* as we do not expect them to deviate
significantly from the optimal values.

To generate the training data for each training problem, we used Fast Downward
(FD) [Helmert, 2006] configured with A* search and the LM-cut heuristic with a
timeout of 2 minutes. To evaluate each testing problem with a heuristic, we used A*
search in Pyperplan [Alkhazraji et al., 2011] with a 5 minute timeout. Pyperplan is a
Python-based classical planner, while FD is based on C++.

We used Pyperplan to evaluate all the heuristics as STRIPS-HGNs are imple-
mented in Python, and for the ease of collecting detailed metrics to compare the
performance of each heuristic. We observed that the implementations of the delete-
relaxation heuristics in Pyperplan are much slower than their counterparts in FD.
This suggests that we should move our evaluation to FD as future work.

We compare the performance of A* with the learned heuristics against the perfor-
mance of A* with hadd, hmax and LM-cut.

5.1.2 Hypergraph Network Configuration

We generate the hypergraph of each planning problem by using the delete-relaxed
problem computed by Pyperplan. The full hypergraph generation procedure is de-
tailed in Section 4.1.

The expected input to a spatial-based STRIPS-HGN is the hypergraph represen-
tation of the delete-relaxed planning problem, along with the proposition (vertex)
features and action (hyperedge) features for the current state. For our spectral-based
HGNN approach, the input is the normalised incidence matrix of the hypergraph and
the proposition features only, as a HGNN does not support hyperedge-level input
features.

For a STRIPS problem P = 〈F, O, I, G, c〉 and a given state s ⊆ F, we encode the
input features for each proposition p ∈ F as a vector [xs, xg] of length 2 where:

xs =

{
1, if p ∈ s

0, otherwise
and xg =

{
1, if p ∈ G

0, otherwise

§5.1 Experimental Setup 55

Recall that G is the set of goal propositions. Observe that xs indicates whether a
proposition p is in the current state, while xg indicates whether p is a goal proposition.
Consequently, propositions that are neither in the current state nor in the goal state
have the feature [0, 0]. We may stack the features for each proposition to get a matrix
X ∈ Nv × 2, where Nv = |F| is the total number of propositions for the problem.

Spectral-based HGNN

For our spectral approach, we use a Hypergraph Neural Network with two hyperedge
convolutional layers (HGNN1 and HGNN2) with increasing output dimensionalities,
followed by two fully connected layers (FC1 and FC2) which aggregate the hidden
representations of each proposition back to 1 dimension. We apply the LeakyReLU
activation function [Maas et al., 2013] after each hidden layer.

Recall that a HGNN only accepts vertex-level inputs and returns vertex-level
outputs. Hence, to get the final heuristic value, we sum the 1-dimensional vertex-
level outputs of the final layer FC2 together. This architecture is depicted in Figure
5.1. Although it is possible to adapt STRIPS-HGNs to represent the architecture of
our spectral-based HGNN, we do not do so for simplicity’s sake.

HGNN1 HGNN2 FC1 FC2
LeakyReLU LeakyReLU LeakyReLU Σ

2 64 64 128 128 64 64 1

(X,	L)

Figure 5.1: The architecture of our spectral-based network for learning heuristics. The num-
bers below each layer represent its input vertex dimensionality and output vertex dimension-
ality. L is the normalised incidence matrix which is only used by the HGNN layers.

The input to our HGNN is a tuple (X, L), where X ∈ Nv × 2 are the stacked
vertex (proposition) features for the current state, and L = D−1/2

v HWD−1
e HTD−1/2

v is
the normalised incidence matrix of the hypergraph for the delete-relaxed planning
problem. Since the hypergraph structure for a delete-relaxed problem is fixed, we
only need to compute L once for a given problem.

Additionally, as a HGNN only supports undirected hypergraphs, we must convert
the directed hypergraph induced by the delete-relaxed STRIPS problem into an undi-
rected hypergraph. We do this by simply taking the absolute value of each element
in the incidence matrix of the directed hypergraph (see Section 3.1 for definitions).

The intuition behind our HGNN architecture is that the network will learn how
much each proposition contributes to the optimal heuristic value by using the nor-
malised incidence matrix to pass signals from each vertex to its neighbouring vertices.
This will ideally enable the network to generalise to new states it was not trained
on. As we will show in our experimental results, the generalisation capability of
spectral-based HGNs is limited in comparison to that of spatial-based HGNs. For
this reason, the main focus of our experiments is to demonstrate the effectiveness of
the latter. We denote the heuristic learned by our spectral approach as hspectral .

56 Empirical Evaluation

Spatial-based STRIPS-HGNs

Our spatial-based HGN uses the STRIPS-HGN architecture introduced in Section
4.2.2. The input feature for each vertex (proposition) is the vector [xs, xg] defined
previously. The input feature for each action a represented by a hyperedge e is a
vector [we, re, se], where we is the cost of the action a, and re and se are the number
of positive effects and preconditions for action a, respectively. re and se are used by
a STRIPS-HGN to determine the number of receivers and senders a hyperedge has.
The maximum number of receivers Nreceiver and senders Nsender for a STRIPS-HGN is
fixed a priori – this is described in the details for the Core Block below.

We set the number of message passing steps M for the recurrent core HGN block
to 10, and let the global (i.e., encoded heuristic value), vertex, and hyperedge features
each have a hidden dimensionality of 32. The update functions of all the HGN blocks
in a STRIPS-HGN are implemented as MLPs which share identical architectures.
Each MLP consists of two fully-connected layers (FC1 and FC2), with each layer being
followed by a LeakyReLU activation function. This design is depicted in Figure 5.2.

FC1 FC2
LeakyReLU

d 32 32 32

LeakyReLU

MLP

Figure 5.2: The MLP architecture used by all the update functions in a STRIPS-HGN. The
numbers below each layer represent its input dimensionality and output dimensionality; the
dimensionality of the input to the MLP is d. There are two fully connected layers, each
followed by the LeakyReLU activation function.

In the MLP for the update function φu for the decoding block, we add an extra fully
connected layer which transforms the latent representation of the global attributes
(32 dimensions) into a single heuristic value. The MLPs are initialised with weights
generated using the Kaiming procedure with a uniform distribution [He et al., 2015],
which helps in avoiding exploding or vanishing gradients during training.

We refer the reader back to Section 4.2.2 for details regarding the input features
to each update function in the encoding, core, and decoding blocks of a STRIPS-
HGN. We concatenate each update function’s input features before they are passed to
the MLP. Table 5.1 summarises the fixed input dimensionalities for the MLP update
functions within each block, which we describe in detail below:

• Encoding Block: the input dimensionality of the vertex-level MLP is 2, as the
feature for each proposition is a vector [xs, xg] of length 2. The input dimen-
sionality of the hyperedge-level MLP is 3, as the feature for each hyperedge is a
vector [we, re, se] of length 3.

• Core Block: recall that the input hypergraph to the core block (see Section
4.2.2) is the concatenation of the initial encoding of the hypergraph G0

hid and the

§5.1 Experimental Setup 57

hypergraph previously output by the core block Gt−1
hid . Hence, the vertex and

hyperedge features in the concatenated input hypergraph each have dimension-
ality of 2× 32 = 64.

– Hyperedge-level MLP: the input to the hyperedge-level update function
are the features e ∈ R2×32 = R64 for a hyperedge (e, R, S) in the input
hypergraph; along with the concatenated features for the receiver vertices
and sender vertices for the hyperedge which have dimensionalities 2×
32× |R| = 64|R| and 2× 32× |S| = 64|S|, respectively.

However, this raises an issue – the input dimensionality of the MLP
must be fixed, but the number of receiver and sender vertices may vary
across actions. We can compute the maximum number of receivers Nreceiver
(senders Nsender) by taking a maximum over the number of positive effects
(preconditions) for each action schema in the domain definitions for several
domains1. Hence, to satisfy the fixed input dimensionality requirement
of a MLP, we use Nreceiver and Nsender to fix the maximum dimensionality
required by the concatenated receiver and concatenated sender vertex fea-
tures, as depicted in Figure 5.3. We sort the receiver vertices and sender
vertices alphabetically by their corresponding proposition names, and in-
sert their features in sorted order into the concatenated feature vectors
of dimensionality 64× Nreceiver and 64× Nsender, respectively. For actions
with fewer receiver and sender vertices than the maximums, we pad the
remaining space in the feature vector with zeros.

To sum up, we concatenate the hyperedge features, receiver vertex
features and sender vertex features (both padded with zeros if necessary)
to get an input dimensionality of 64 + 64|Nreceiver|+ 64|Nsender| = 64(1 +
Nreceiver + Nsender). An example of this complete concatenated input feature
is presented in Figure 5.3.

– Vertex-level MLP: the input to the vertex-level update function are the
features v ∈ R2×32 = R64 for a vertex in the input hypergraph, along with
the aggregated latent representation of the hyperedges where the vertex is
a receiver which has a dimensionality of 32. We concatenate these features
to get an input dimensionality of 64 + 32 = 96 for the vertex-level MLP.

– Global MLP: the input to the global update function is the aggregated
latent representation of both the hyperedges and the vertices, each having
a hidden dimensionality of 32. We concatenate these features to get an
input dimensionality of 32 + 32 = 64.

• Decoding Block: the input dimensionality of the global MLP in the decoder is
the hidden dimensionality of the global attributes, which is 32.

For the aggregation functions ρe→v, ρe→u and ρv→u in the core HGN block of
a STRIPS-HGN, we use element-wise summation. This satisfies the permutation

1This approach would not work for the universally quantified preconditions and effects found in the
ADL fragment of PDDL. However, it works fine for STRIPS.

58 Empirical Evaluation

Encoding Block Core Block Decoding Block

Global MLP ∅ 32 + 32 = 64 32
Vertex MLP 2 2× 32 + 32 = 96 ∅
Hyperedge MLP 3 2× 32(1 + Nreceiver + Nsender) ∅

Table 5.1: Input dimensionalities for the MLPs in the Encoding, Core, and Decoding HGN
blocks of a STRIPS-HGN. Nreceiver and Nsender are the maximum number of receivers and
senders for all hyperedges, respectively. ∅ indicates that the block does not contain a MLP
for the corresponding update function.

x1 ... x64 x65 ... x128

Hyperedge	Feature

x129 ... x192

Receiver	Vertex	Features

x193 ... x256 x257 ... x320

Sender	Vertex	Features

Figure 5.3: The concatenated features for a single hyperedge which is the input to the
Hyperedge-level MLP in the core processing block of a STRIPS-HGN. We assume Nsender =
Nreceiver = 2. If a hyperedge contains only a single receiver vertex, we insert the latent feature
for that vertex into the space between x65 and x128, and set all elements between x129 and
x192 to 0 (zero padding). On the other hand, if a hyperedge contains two receiver vertices, we
firstly alphabetically sort the latent vertex features by their proposition names. We then insert
the features of the first vertex between x65 and x128, and the features of the second vertex
between x129 and x192.

invariant and variable number input requirements of an aggregation function in a
HGN block.

As mentioned in Section 4.2.3, the intuition behind our spatial STRIPS-HGN
design is that we incrementally propagate the latent features for the vertices and
hyperedges from the initial propositions to the goal propositions. For problems
where the optimal plan requires more than 10 actions, 10 message-passing steps is
insufficient for the information from the initial propositions to reach all the goal
propositions. Nevertheless, our results show that the heuristic estimates provided by
our STRIPS-HGNs help A* find a near-optimal plan in less heuristic calls than hmax

and LM-cut even when the optimal plan has more than 10 actions. We denote the
heuristic learned by our spatial approach as hspatial .

Implementation Details

The design of our implementation of Hypergraph Networks is based off the imple-
mentation of Graph Networks: https://github.com/deepmind/graph_nets/. In contrast
to the GNs framework, which is implemented in Tensorflow and Sonnet, our HGNs
framework is implemented in PyTorch. We implement STRIPS-HGNs using our HGN
framework.

Since HGNs and GNs are designed to be extremely general, the resulting models

https://github.com/deepmind/graph_nets/

§5.1 Experimental Setup 59

that may be implemented are not very fast due to the overheads of the framework.
Models which do not require the full representational capability of HGNs should
be implemented from the ground up to maximise their computational efficiency.
Moreover, there are several optimisations that can be made to increase the training
and evaluation speed of our HGN framework, including improving implementation
details and using multiple CPU cores or even a GPU in our experiments. Hence, the
CPU times in our results for hspatial should be considered preliminary.

The spectral-based HGNN model was implemented using the reference source
code provided by Feng et al. [2019]: https://github.com/iMoonLab/HGNN. We did not
use our HGN framework to implement HGNNs, as the reference implementation is
extremely fast.

Invariance of HGNNs and STRIPS-HGNs

We define the invariance of a HGN as the property where the network returns identi-
cal heuristic estimates for isomorphic states in a set of isomorphic problems. We call two
problems P1 and P2 isomorphic if we can rename the objects, predicates (propositions),
and actions of P2 to get P1. Two states s1 from P1, and s2 from P2 are isomorphic if
the renaming of P2 such that P2 = P1 guarantees s2 = s1. Consider the isomorphic
Blocksworld problems shown in Figure 5.4 – we would expect a learned heuristic to
return identical heuristic estimates for all isomorphic states in the problems. Similarly,
we call two hypergraphs G1 and G2 isomorphic2 if there exists a relabelling of the
vertices and hyperedges in G2 such that G2 is identical to G1.

A spectral-based HGNN computes a new feature for each vertex v by perform-
ing a weighted aggregation of the features of its neighbouring vertices, where the
normalised incidence matrix is used to define these neighbours. Since a HGNN com-
putes feature updates based on a hypergraph’s underlying structure, it is invariant
to different orderings of the vertices and hyperedges in the incidence matrix, as long
the underlying hypergraphs are isomorphic. Consequently, a HGNN is invariant
to the renaming of objects in a planning problem, and the renaming of actions and
predicates in the domain definition.

On the other hand, a STRIPS-HGN is only invariant to the renaming of objects in a
problem and the renaming of actions in the domain definition. The lack of invariance
to the renaming of predicates in the domain definition may be attributed to the
alphabetical sorting procedure we impose on the receiver and sender vertices before
we concatenate them as input to the hyperedge-level MLP in the update function φe

in the core block. Although we could define a more intelligent sorting procedure
which maintains a stricter form of consistency, in order to guarantee invariance the
update function φe must be implemented as a model, such as Deep Sets [Zaheer
et al., 2017], which is permutation invariant to the ordering of the receiver and sender
vertices. Although implementing this is not trivial, it is feasible given the flexibility of
the HGN framework. Despite this invariance limitation, the generalisation capability

2Although this is not the formal definition of a hypergraph isomorphism, it suffices for our discussion.
We refer the reader to [Luks, 1999] for the formal definition.

https://github.com/iMoonLab/HGNN

60 Empirical Evaluation

b

a

c 1

3

2

b

a

c

INITIAL

GOAL

1

3

2

GOAL

INITIAL

on(c, b); on(b, a); on-table(a) top(c, b); top(b, a); on-ground(a)

on(a, b); on-table(b); on-table(c) top(3, 1); on-ground(1); on-ground(2)

Two Isomorphic Blocksworld Problems with
different object and predicate naming

Figure 5.4: Two isomorphic Blocksworld problems where the blocks and predicates have
different names.

of a STRIPS-HGN is extremely promising.

5.1.3 Training Procedure

Stratified k-Fold and Binning

k-Fold is a technique to split a dataset into k folds (i.e., partitions), with each fold
containing roughly the same number of samples. Stratified k-Fold is an extension to
k-Fold which guarantees that each fold approximately maintains the percentage of
samples for each target class found in the dataset. This increases the probability that
the fold is representative of the entire dataset.

Stratified k-Fold requires the target heuristic values to be discrete, not continuous.
We use numerical binning to split the continuous values into n discrete bins – this
converts the continuous values into discrete values. We are only concerned with
quantile binning, where the dataset is split into n bins of approximately equal size by
using the percentiles of the continuous input values (e.g. for n = 4 bins, we use the
25th, 50th and 75th percentiles). We refer the reader to https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.KBinsDiscretizer.html for more details regarding
the quantile binning procedure.

In our training procedure, we firstly bin the samples in our training dataset based

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

§5.1 Experimental Setup 61

on their target optimal heuristic values. We then use stratified k-Fold to split the
dataset into k folds F = { f1, . . . , f10} such that each fold f ∈ F contains roughly the
same number of samples for each heuristic bin, ensuring that the fold is relatively
representative of the dataset. Now, we may train a separate HGN for each fold f ∈ F
using F \ f as the training set and f as the validation set which we use to detect
overfitting. Evidently, this will mean that every training sample is used for both
training and validating a model (but not the same model). Recall that the validation
set is used to test a network’s ability to generalise to data it was not trained on.

k-Fold is usually used for cross validation, where the effectiveness of different
choices of model design is compared by analysing the mean validation loss across the
k folds for each model design. However, we use k-Fold to reduce any potential noise
and demonstrate robustness over the training set used, by selecting the single model
which achieved the lowest loss for the validation set in its fold as the ‘representative’
for an experiment.

In planning, we may generate as much training data as we want by using a
problem generator, which is equivalent to a generative model of the domain. This
is in comparison to a typical machine learning dataset, where the samples have to
be painstakingly collected and tagged either manually or semi-automatically. Hence,
we use k-Fold to show that our Hypergraph Networks are robust with respect to
the problems generated for training, and to reduce any noise that may arise from an
unrepresentative training/validation split of the dataset which may lead a HGN to
overfit/underfit to the true distribution of the dataset.

Training Configuration

Unless otherwise specified, the same configurations which we describe below are
maintained across each experiment. After generating the training data using the
procedure described in Algorithm 4, we split the training data into 4 bins based on
the optimal heuristic values, and use stratified 10-Fold cross validation to split the
training data into 10 folds F = { f1, . . . , f10} of roughly equal size.

Now, for each fold f ∈ F, we train a Hypergraph Network using F \ f as the
training set and f as the validation set, and subsequently select the network at the
epoch which achieved the lowest loss on the validation set f . This prevents any
overfitting to the training set, and mitigates any effects of noise that may arise from
influences such as the minibatch size. Since we train one HGN for each of the 10 folds,
we are left with 10 separate networks. We select the network which performed best
on the validation set for its fold as the single representative HGN for an experiment.
This single representative HGN is then evaluate on a previously unseen test set.

Both the spectral-based HGNN and spatial-based STRIPS-HGNs are trained using
the procedure we defined in Section 4.3. We use the Adam optimiser with a learning
rate of 0.001 and a L2 penalty (weight decay) of 0.00025 [Kingma and Ba, 2014]. We set
the minibatch size to 1, as we found that this resulted in a learned heuristic with the
best planning performance and helped the loss function converge much faster despite
the ‘noisier’ training procedure. Moreover, as one of the goals of our experiments is

62 Empirical Evaluation

to show that a HGN is able to generalise when trained on a small set of problems,
the size of our training data is usually limited to 50 to 200 samples. Hence, a larger
minibatch size would likely trap the network in a local optimum during training, as
the losses (and hence gradients) would be averaged across the minibatch (Equation
4.3).

We concede that our training procedure is both time-consuming and not extremely
robust, and consequently has room for improvement. Future work should consider
how to more reliably train a HGN in order to maintain more consistent performance
across several runs of an experiment. Nevertheless, our modified stratified k-Fold
training procedure results in much more reliable performance across several experi-
ments in comparison to the performance of networks trained and selected based on a
simple train/validation split.

5.1.4 Interpreting the Result Plots

The metrics which we show in our plots are, for each heuristic, the number of heuristic
calls and the total CPU search time required by A* to solve the problem, as well as the
deviations from the optimal plan length. Since we run an experiment multiple times
for hspectral and hspatial , we plot the mean and 95% confidence interval for a metric in
the runs where a plan was found by A* in the limited search time.

We order the problems in the x-axis of the plots by the problem difficulty. Let
P = [P1, . . . , Pn] represent the final ordering for n testing problems which at A* was
able to solve with at least one heuristic. We now discuss how P is constructed.

The heuristics are firstly sorted in ascending order of their coverage on the test set
(i.e., the number of testing problems it was able to solve with A*). Unless otherwise
specified, ties are broken in the following order: hmax, hspectral , hspatial , LM-cut, hadd.

Now, for each heuristic in this ordering, we sort the problems [Pj, . . . , Pk] which
A* was able to solve by the number of heuristic calls and append each problem
Pi ∈ sorted([Pj . . . , Pk]) into P only if Pi /∈ P . After we perform this procedure for
each heuristic and problem, |P| = n as required. Evidently, the continuities in a curve
for a heuristic indicate the problems which could be solved, while discontinuities
indicate the problems which could not be solved.

The x-axes in the plots for deviation from the optimal plan length do not include
problems in the ordering P which A* was unable to solve with either hmax or LM-cut
within the time limit. This is because we can only compute a deviation if we know the
true optimal plan length. Although our plots for the deviations from the optimal plan
length are quite noisy, we may still conclude that hadd generally performs substantially
worse in comparison to hspatial and hspectral . We attempted to use more sophisticated
methods for problem ordering and different types of plots including scatter plots,
but found that our current approach is the easiest for conveying the plan length
deviations and their corresponding confidence intervals.

§5.2 Domains and Problems 63

Problem-Size Dependent Domain-Dependent Domain-Independent

n-puzzle,
Sokoban (spectral)

Blocksworld,
Matching Blocksworld,

Gripper, Hanoi
Ferry, Zenotravel,
Sokoban (spatial)

Blocksworld + Zenotravel + Gripper,
Train on Zenotravel + Gripper
and evaluate on Blocksworld

Table 5.2: The classes of heuristics we learn in our experiments, along with the domains we
use in these experiments.

5.2 Domains and Problems

Across all the domains we present below, we assume that all actions have unit cost.
However, as we have previously discussed, STRIPS-HGN and HGNNs are able to
support actions with different costs through the hyperedge weights. All the problems
in our experiments were randomly generated and have unique initial states and goal
states. Hence, there is minimal to no overlap between the training problems and
testing problems.

The main goal of our experiments is to show that a STRIPS-HGN trained on a
set of small-sized problems is able to generalise to significantly larger problems. Our
experiments for each domain may be broken down into learning three classes of
heuristics (shown in Table 5.2):

1. Problem-size dependent heuristics: a heuristic learned by a HGN which has
been trained and evaluated on problems from the same domain with identical
hypergraph structures (i.e., same number of objects, propositions and actions),
where we only vary the initial state and the goal.

2. Domain-dependent heuristics: a heuristic learned by a HGN which is trained
on small problems from a domain, and evaluated on larger problems from the
same domain.

3. Domain-independent heuristics: a heuristic learned by a HGN which has been
trained on problems from several domains, and evaluated on problems from
the same or different domains to the ones the network was trained on.

Sections 5.2.1 to 5.2.8 will describe the domains we evaluate our HGNs on, along with
the experimental configurations for learning problem-size dependent heuristics and
domain-dependent heuristic heuristics. Although we learn problem-size dependent
heuristics and domain-dependent heuristics, the complete pipeline for training and
evaluating a HGN is domain-independent. Next, Section 5.2.9 will describe the
problems and configuration we use to show that the heuristic function learned by a
STRIPS-HGN may generalise across multiple domains, i.e., it is domain-independent
to a certain extent.

64 Empirical Evaluation

5.2.1 Blocksworld

An agent’s objective in Blocksworld is to use its gripper to stack a set of blocks on
the table in some specified goal configuration. We consider 4-operation Blocksworld,
where an agent may: stack one block on top of another, unstack one block from another,
put-down a block it is holding on to the table, and pick-up a block from the table. An
example of a Blocksworld problem is shown in Figure 5.5.

b4

b1

b2

b3

Initial	State Goal	State

b4 b1

b2b3

4. stack(b1, b2) 5. pick-up(b4) 6. stack(b4, b3)
1. unstack(b3, b2) 2. put-down(b3) 3. pick-up(b1),

Figure 5.5: Example of a Blocksworld problem with 4 blocks, along with the actions in an
optimal plan.

Experimental Configuration

For our Blocksworld experiment, we train both the spectral-based and spatial-based
approach to analyse and compare their generalisation capabilities to larger problems.
For each of the 10 folds in an experiment, we train the fold’s network for 10 minutes.
It is important to note that although this gives a total training time of 100 minutes,
the final network that we select has only been trained for 10 minutes.

Each network was trained on the optimal training data generated from 10 ×
{3, 4, 5 blocks} = 30 problems, and evaluated on 20 × {6, 7, 8, 9, 10 blocks} = 100
larger problems. We generate the problems using the BWSTATES generator described
in [Slaney and Thiébaux, 2001], which is publicly accessible here: http://users.cecs.anu.
edu.au/~jks/cgi-bin/bwstates/bwcgi.

5.2.2 Matching Blocksworld

Matching Blocksworld is a variant of Blocksworld where each block has a positive or
negative polarity, and the agent now has two grippers, one with positive and one with
negative polarity [Fern et al., 2011]. When a gripper picks up a block of the opposite
polarity, the block becomes damaged such that no other block may be stacked on top
of it. This may evidently lead to a dead end.

The difficulty in a Matching Blocksworld problem is determined by the number
of blocks, and the number of towers required in the goal state. As we increase the
number of blocks and decrease the number of towers, a problem becomes more
difficult.

http://users.cecs.anu.edu.au/~jks/cgi-bin/bwstates/bwcgi
http://users.cecs.anu.edu.au/~jks/cgi-bin/bwstates/bwcgi

§5.2 Domains and Problems 65

1 2

Room A Room B

1

2

Room A Room B

1 2

Room A Room B

1 2

Room A Room B

1

2

Room A Room B

1 2

Room A Room B

Initial	State 1.	pick-up(1,	left) 2.	pick-up(2,	right)

3.	move(Room	A,	Room	B) 4.	drop(1,	left) 5.	drop(2,	right),	Goal!

Figure 5.6: Example of a Gripper problem with 2 balls, along with the optimal plan. Note
that actions have been abbreviated from their original domain definition for simplicity.

Experimental Configuration

We train our STRIPS-HGNs on 5×{2, 3, 4 blocks}× {1, 2 towers} = 30 problems, and
evaluate them on 89 larger problems with 5 to 8 blocks. The testing set consists of 19
problems for 5 blocks (6, 6, 5, and 2 problems for 1, 2, 3, and 4 towers, respectively);
20 problems for 6 blocks (5× {1, 2, 3, 4 towers}); and 25 problems each for 7 and 8
blocks (5× {1, 2, 3, 4, 5 towers}).

ll problems were randomly created using the generator provided in the IPC 2008
Learning Track competition [Fern et al., 2011]. We limit the training time for the
network in each of the 10 folds to 15 minutes, giving a total training time of 2.5 hours
(150 minutes).

5.2.3 Gripper

Gripper is a very simple domain where a robot, which has 2 grippers (left and right),
must move n balls from Room A to Room B [Long et al., 2000]. A Gripper problem
with n = 2 balls is depicted in Figure 5.6. The optimal plan for a problem of any size
requires the robot to pick up 2 balls (or 1 ball if only one is available) from Room A
using its two grippers, move to Room B, drop the balls, move back to Room A, and
repeat. Despite the fact that Gripper is a simple problem, A* with hmax, hadd, and
LM-cut struggles as the number of balls increases above 10.

Experimental Configuration

We train both spatial and spectral HGNs on the first three Gripper problems with 1
to 3 balls, and evaluate them on problems with 4 to 20 balls. We reduce the number
of bins to 3 given the limited size of the training set, and restrict the training time of
each fold’s network to 90 seconds. This gives a total training time of 15 minutes for
the 10 folds in a given experiment.

Moreover, since we only generate a training set with 20 samples from the training

66 Empirical Evaluation

problems, we resample the training set to size 50 using stratified resampling with
replacement (the binned heuristic values are used as the class labels). The heuristic
bins are then recomputed based on the resampled training set before stratified 10-
fold is applied. Due to the noise in this resampling procedure which may result in
networks with varying performance, we repeat the experiment 20 times.

Interestingly, our spatial-based STRIPS-HGN performed worse in terms of plan-
ning performance if we added the problem with 4 balls to the training set. This
suggests that the network may be overfitting to the training data, and hence a more
suitable training mechanism should be deployed.

5.2.4 Hanoi

In the Tower of Hanoi, which we abbreviate to Hanoi, there are three pegs and n disks
of different sizes. In the initial state the n disks are stacked on top of each other (by
ascending size) on the left-most peg. The goal is to move the n disks to the right-most
peg and maintain this ordered stack. The only action we may apply in any state is to
move a disk at the top of the stack from one peg to another peg, where a disk cannot
be placed on top of a smaller disk. Figure 5.7 depicts a Hanoi instance with n = 3
disks.

Initial

7
Goal

1

2 3 4

5 6

Figure 5.7: Example of a Hanoi problem with 3 disks, along with the seven states in the
optimal plan.

The key to Hanoi is to notice that a problem with n disks can be solved recursively
by breaking it down into simpler computations for n− 1, n− 2, . . . , 1 disks [Pierrot
et al., 2019]. For the base case with 1 disk, we can move the disk to the right peg
without any restrictions. We would expect HGNs to struggle on Hanoi, as learning
this recursive relationship is quite difficult for a learning-based model.

§5.2 Domains and Problems 67

Experimental Configuration

We train a STRIPS-HGN on the Hanoi problems with 3 and 4 disks, and evaluate the
network on problems with 3, . . . , 10 disks. We train the network in each of the 10
folds for 5 minutes, giving a total training time of 50 minutes.

Since the training set only contains 24 training pairs, we resample it to size 50
using stratified resampling with replacement using the initial heuristic bins which
are subsequently recomputed (as described for Gripper in Section 5.2.3). The overlap
of the training and testing set for problems with 3 and 4 disks intends demonstrate
show the poor planning performance of the STRIPS-HGN on problems it was trained
on. As we will show, a STRIPS-HGN is unable to learn an informative heuristic value
for Hanoi.

5.2.5 Ferry

Ferry is a transportation problem where the objective is to move a number of cars
from their initial locations to their goal locations using a ferry. A ferry may travel
from one location to any other location, but may only carry one car at a time. We
refer the reader to [Long and Fox, 1999], which contains an analysis of not only Ferry,
but also Gripper and Hanoi.

Experimental Configuration

We train a STRIPS-HGN on {2, 3, 4 locations} × {1, 2, 3, 4 cars} = 12 problems, and
evaluate the network on {2, 3, . . . , 10 locations}×{5, 10, 15, 20 cars} = 36 significantly
larger problems.

We decrease the number of folds to 5, as the generated training which contains
70 samples is quite small. Additionally, we limit the training time for the network
of each fold to 3 minutes. This gives a total training time of 15 minutes for each
experiment.

5.2.6 Zenotravel

Zenotravel is a transportation problem where the objective is to move each passenger
from their origin city to their desired destination city by using one or more planes.
Each plane has fuel which may need to be replenished, and can only carry one
passenger at a time. Evidently, Zenotravel is a more complex transportation problem
than Ferry.

A Zenotravel problem has a fixed number of passengers, cities, and planes. The
difficulty of a problem is heavily influenced by the number of passengers, as it is the
factor which exerts the most impact on the depth of the search tree. We refer the
reader to [Helmert, 2008] for more details regarding Zenotravel.

68 Empirical Evaluation

Figure 5.8: Example of an 8-puzzle problem along with its optimal plan. Figure taken from
https://www.cs.princeton.edu/courses/archive/spring18/cos226/assignments/8puzzle/index.html

Experimental Configuration

We train a STRIPS-HGN on 10 problems with 2 cities which have 1-4 planes and
2-4 passengers, and 10 problems with 3 cities which have 1-3 planes and 2-4 pas-
sengers. We evaluate the trained network on {2, 3, 4 cities} × {2, 3, 4, 5 planes} ×
{3, 4, 5, 6, 7 passengers} = 60 problems. We use the generator provided in the IPC
2002 planning competition [Long and Fox, 2003] to randomly generate the problems.

We train the STRIPS-HGN in each fold for 10 minutes, giving a total training time
of 100 minutes for each experiment.

5.2.7 n-puzzle

n-puzzle is a sliding puzzle problem where there are n tiles in a square grid with n+ 1
squares. Let us assume the names of the tiles are 1, . . . , n. The objective of n-puzzle
is to slide the tiles from their initial configuration to the goal configuration where the
tiles are ordered alphabetically by their names from left-to-right and top-to-bottom
(see the goal state in Figure 5.8).

Although finding a plan to a n-puzzle problem is relatively easy, finding an
optimal plan is difficult and has been shown to be NP-hard [Ratner and Warmuth,
1986]. Approaches which learn macro-actions, which are sequences of actions which
have been observed frequently in the plans for a given domain, have shown to be
successful for n-puzzle [Iba, 1989].

Experimental Configuration

We train both the spectral-based and spatial-based HGNs on 10 randomly generated 8-
puzzle problems with a 3× 3 grid size, and evaluate them on 50 randomly generated
8-puzzle problems. The heuristic learned by a HGN in our n-puzzle experiment is
problem-size dependent, as the hypergraph structure is identical for the training and
testing problems.

We used the generator provided by the IPC 2008 Learning Track competition [Fern
et al., 2011] to randomly generate the problems. The goal state for all the training
and testing problems are identical, but the initial states are all unique.

We limit the training time for the network in each of the 10 folds to 10 minutes,
giving a total training time of 100 minutes for each experiment. We did not experi-
ment with 15-puzzle problems with a 4× 4 grid size, as our initial experiments found

https://www.cs.princeton.edu/courses/archive/spring18/cos226/assignments/8puzzle/index.html

§5.2 Domains and Problems 69

that the majority of these problems are too difficult for hmax and LM-cut to solve
optimally within the limited search time.

5.2.8 Sokoban

An agent’s objective in Sokoban is to move boxes in a warehouse from their initial
positions to the desired storage locations. We assume that a warehouse is a n× n
grid where each square is either a wall, or the floor. The agent can move and push
boxes around on the warehouse floor in the cardinal directions (up, down, left, right),
as long as a wall does not block the agent or the box. Figure 5.9 depicts an example
of a Sokoban problem.

Sokoban is PSPACE-complete [Culberson C., 1997] and is extremely difficult for
search algorithms due to its large branching factor and the substantial search depth
required to find a solution. Consequently, this means that it is more difficult for a
network to learn a heuristic for Sokoban that it is to learn a heuristic for a problem
that is only NP-hard, such as optimal Blocksworld planning.

Steps	1	to	6 Steps	7	to	11 Steps	11	to	26 Steps	27	to	30

Figure 5.9: Example of a Sokoban problem with 1 box and a grid size of 7. The steps for an
optimal plan are indicated in each diagram, where the solid arrows depict the agent moving
while the dotted arrow represents the agent pushing the box. The walls are indicated in blue,
the box in orange, and the goal position in green.

Experimental Configuration

We limited the number of boxes to 2 for our Sokoban experiments. We gener-
ate 10× {5, 7 grid size} = 20 training problems, and 20× {5, 7 grid size} ×+10×
{8 grid size} = 40 + 10 = 50 testing problems. In each problem, we randomly se-
lected the number of walls to be between 3 and 5. The goal states for problems of
a given grid size are identical, due to the implementation of the problem generator
provided by [Fern et al., 2011] in the IPC 2008 Learning Track competition.

We increase the number of bins to 5 due to the larger range of optimal heuristic
values for the training problems, and reduce the number of folds to 5. The training
time for a STRIPS-HGN within each fold is limited to 20 minutes, giving a total
training time of 100 minutes for each experiment.

For our spectral-based approach, we train a separate HGNN for each grid size in
{5, 7, 8}. We do so because the hypergraph structures varies significantly as we alter

70 Empirical Evaluation

the grid size, and hence the generalisation of a HGNN to problems larger than those
it was trained on would be significantly limited. Additionally, we generate 5 training
problems of grid size 8 in order to evaluate the HGNN on the problems of grid size
8. We limit the training time for a HGNN with grid size 5 to 10 minutes per fold,
grid size 7 to 15 minutes per fold, and grid size 8 to 20 minutes per fold. These times
were determined by observing the rate of convergence of a HGNN on its training
problems.

Hence, we learn learn problem-size dependent heuristics for spectral-based HGNNs,
and domain-dependent heuristics for spatial-based STRIPS-HGNs.

5.2.9 Multi-Domain Experiments

We now discuss the experimental configurations of our multi-domain experiments,
which aim to show that the heuristics learned by STRIPS-HGNs are to a certain
degree, domain-independent.

When the training problems come from multiple domains D = {D1, . . . , Dn},
we run our binning and stratified k-Fold data splitting procedure separately for the
problems in each domain D ∈ D. This results in a total of kn folds for the n domains.
We merge together the k folds by merging the 1st fold for D1 with the 1st folds for
D−D1, and so on for D2, . . . , Dn. This results in k merged folds, as depicted in Figure
5.10. This procedure ensures that each fold is relatively representative of the training
data within each individual domain, and to remove any cross-domain noise if we
performed binning on the training samples from multiple domains.

Fold 1
Fold 2
Fold 3

Fold 1
Fold 2
Fold 3

Fold 1
Fold 2
Fold 3

Blocksworld

Zenotravel

Gripper

Fold 1

Fold 2

Fold 3

Merged Folds

Figure 5.10: The aggregation of 3-folds from 3 separate domains into 3 merged folds.

Training and evaluating on the same domains

We train a STRIPS-HGN on 5×{4, 5 blocks = 10 Blocksworld problems, 5×{2, 3 cities}
= 10 Zenotravel problems (1-4 planes, 2-5 people), and the first 3 Gripper problems

§5.3 Experimental Results 71

with {1, 2, 3 balls}. The choice of these domains stems from the fact that STRIPS-
HGNs are able to provide very informative heuristic estimates when trained individ-
ually on each domain. For Gripper, we resample the training set size of 24 to 50 using
the stratified resampling procedure previously described in Section 5.2.3.

We limit the training time of the network in each of the 10 folds to 15 minutes
giving a total training time of 150 minutes, and evaluate the representative STRIPS-
HGN on 20 × {6, 7, 8, 9, 10 blocks} = 100 Blocksworld problems, {2, 3, 4 cities} ×
{2, 3, 4, 5 planes} × {3, 4, 5, 6, 7 passengers} = 60 Zenotravel problems, and {4, 5, . . . ,
20 balls} = 17 Gripper problems. As we will show in our results in Section 5.3.3, a
STRIPS-HGNs is able to learn some form of knowledge which allows it to generalise
to larger problems across all three of these domains.

Evaluating on different domains to what a STRIPS-HGN was trained on

This experiment aims to show the potential generalisation capability of a STRIPS-
HGN to domains it was not trained on. We train a STRIPS-HGN on 5× {2, 3 cities}
= 10 Zenotravel problems (1-4 planes, 2-5 people), and the first 3 Gripper problems
with {1, 2, 3 balls}. For Gripper, we resample the training set size of 24 to 50 using
the stratified resampling procedure previously described in Section 5.2.3.

We limit the training time of the network in each of the ten folds to 10 minutes
giving a total training time of 100 minutes, and evaluate the learned heuristic on
10× {4, 5, 6, 7, 8} = 50 Blocksworld problems.

5.3 Experimental Results

We split our experimental results into three sections based on the classes of heuristics
we learn: problem-size dependent, domain-dependent, and domain-independent
heuristics. Table 5.2 shows a summary of the domains we experimented with for each
class of heuristic. A discussion of our results is provided in Section 5.3.4.

We define the average coverage for a heuristic as the average of the coverage across
all the test problems. This provides a metric which allows us to roughly gauge how
many problems across the test set the heuristic was able to solve. We run A* with
hmax, hadd and LM-cut once giving a coverage of either 0/1 = 0 or 1/1 = 1 for each
problem. Recall that for hspatial and hspectral , we repeat an experiment several times
to obtain the test results of multiple trained heuristics (we repeated an experiment
10 times unless otherwise specified in the experimental configurations in Section
5.2). Now, the coverage of a problem is the ratio of the number of STRIPS-HGNs

which successfully solved the problem, to the total number of times we repeated the
experiment which is equal to the number of STRIPS-HGNs we trained. For example,
if we repeated an experiment 20 times but only 8 out of 20 of the STRIPS-HGNs

reached the goal when used with A* for a problem P, then P’s coverage is 8/20 for
hspatial . We report average coverage to 2 decimal places.

72 Empirical Evaluation

5.3.1 Learning Problem-Size Dependent Heuristics

n-puzzle

Figure 5.11 shows the results of our experiments for n-puzzle with 8 tiles, where
we trained both the spectral and spatial-based HGNs. All heuristics achieved full
coverage for all the test problems.

Firstly, we may notice that hmax requires significantly more heuristic calls than all
the other heuristics. hspatial and hspectral on average require less heuristic calls than
LM-cut and hadd. This suggests that the networks have learned some information
about the tile configurations within 8-puzzle that helps it provide accurate heuristic
estimates.

hspatial requires less heuristic calls than hspectral and maintains a smaller deviation
from the optimal plan, but is not competitive in terms of CPU time. This is due to our
sub-optimal implementation of Hypergraph Networks and the unavoidable cost of
multiple rounds of message passing. On the other hand, the performance of hspectral

is very competitive as it requires very little CPU time and finds near-optimal plans.
We observe that both hspatial and hspectral result in significantly lower-cost plans

than the plans from hadd. hspatial achieves slightly better performance than hspectral in
terms of plan length and number of heuristic calls – this may be attributed to the
richer message passing design of a STRIPS-HGN which propagates information more
effectively in the hypergraph.

Sokoban

Recall from Section 5.2.8 that for each Sokoban experiment, we train a single STRIPS-
HGN on problems with a grid size of 5 and 7, and evaluate the network on all the
testing problems with grid sizes 5, 7 and 8 – this is equivalent to learning a domain-
dependent heuristic. In contrast, here in this experiment, we train and evaluate a
separate HGNN for each grid size in {5, 7, 8} – this means each HGNN learns a
problem-size dependent heuristic. We group the results of these heuristics together
rather than split them into their respective subsections, so we can easily compare
their planning performance.

Figure 5.12 shows the results of our Sokoban experiment. Although the number
of heuristic calls for A* with hadd is the lowest among all the heuristics, its deviation
from the optimal plan length is substantially larger than the deviations for hspectral

and hspatial .
In general, hspectral requires more heuristic calls than hspatial , and has a slightly

increased deviation from the optimal plan length. This is despite the fact that we
train a separate HGNN for each grid size, providing further evidence for the weaker
generalisation capability of spectral-based approaches. Both hspectral and hspatial are
competitive with LM-cut in terms of number of heuristic calls. However, hspectral is
much more competitive than LM-cut and hspatial in terms of CPU time, given the
lower computational cost required by hspectral to compute a heuristic estimate.

The average coverage for the test problems was 1 for hmax, hadd and hspectral , 0.96

§5.3 Experimental Results 73

Problem Difficulty (50 problems)
0

20000

40000

60000

80000

100000

120000

140000
He

ur
ist

ic
Ca

lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

1000

2000

3000

4000

5000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

10

20

30

40

50

60

70

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

10

20

30

40

50

Total CPU Time for A*
hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

5

10

15

20

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

hspectral

Figure 5.11: Results for n-puzzle with n = 8 tiles. hmax is removed from the plots in the 2nd
column so we can focus on the results for the other heuristics. Note, that the same colour is
used for each heuristic across all of our plots.

for LM-Cut, and 0.91 for hspatial . The large spike in the confidence interval for hspatial

may be attributed to a difficult problem it achieved low coverage for.

74 Empirical Evaluation

Problem Difficulty (50 problems)
0

10000

20000

30000

40000

50000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

10000

20000

30000

40000

50000

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspectral

Problem Difficulty (50 problems)
0

200

400

600

800

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (50 problems)
0

25

50

75

100

125

150

175
Total CPU Time for A*

hmax

hadd

LM-Cut
hspectral

Problem Difficulty (50 problems)
0

5

10

15

20

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

hspectral

Figure 5.12: Results for Sokoban. hspatial is removed from the plots in the second column.
When analysing these plots, it is important to remember that a single STRIPS-HGN is trained
on problems with a grid size of 5 and 7, and evaluated on all test problems with a grid size
of 5, 7, and 8. In contrast, a separate HGNN is trained and evaluated for each of these grid
sizes (see Section 5.9 for details).

§5.3 Experimental Results 75

5.3.2 Learning Domain-Dependent Heuristics

Blocksworld

Figure 5.13 shows the results of our Blocksworld experiments, where we train both
spectral and spatial-based HGNs (see Section 5.2.1). Firstly, we can observe that as the
problem difficulty increases, hspectral requires substantially more heuristic calls than
hspatial . This confirms the limited generalisation capability of spectral-based HGNs.
hspatial also requires less CPU time than hspectral for the more difficult problems, and
is competitive with LM-cut.

Both hspatial and hspectral deviate significantly less from the optimal plan length in
comparison to hadd. The smaller deviation from the optimal plan length for hspectral

may be attributed to the increased amount of search performed by A*, as is evident
by the large heuristic calls required for the more difficult problems. This suggests
that hspectral may be providing underestimates in comparison to hspatial . The coverage
for both hspatial and hspectral started to decrease for problems with 10 blocks to around
8/10. The average coverage was 0.8 for hmax, 1 for hadd, 0.98 for LM-Cut, 0.97 for
hspatial , and 0.95 for hspectral .

Interestingly, hspatial requires less heuristic calls on average than hadd, yet finds
substantially cheaper plans. This suggests that STRIPS-HGNs are able to learn a form
of generalisable knowledge which may be effectively applied across Blocksworld
problems with a varying number of blocks.

Matching Blocksworld

Figure 5.14 shows our results for the Matching Blocksworld experiment described in
Section 5.2.2. Notice that hspatial requires substantially less heuristic calls than hmax for
all problems, and LM-cut for the more difficult problems. Although hspatial requires
slightly more heuristic calls than hadd, the deviation from the optimal plan length for
hspatial is much less than the deviations for hadd. This suggests that a STRIPS-HGN
is able to learn some knowledge on how the polarities of a gripper interact with a
block.

In terms of CPU time, hspatial is not very competitive with the other heuristics
given the cost of message passing and our sub-optimal implementation. In our
experiments, we observed that hspatial begins to struggle for problems where the goal
is to stack 8 blocks into a single tower. For such problems, the coverage hovered
around 4/10. This decreased performance may be attributed to the substantial time
required to compute a single heuristic value (0.01 to 0.02 seconds), which means that
A* will time out before a plan is found. The average coverage was 0.85 for hmax, 1 for
hadd, 0.98 for LM-Cut, and 0.83 for hspatial .

Gripper

The results of our Gripper experiments for both spectral and spatial-based HGNs are
shown in Figure 5.15. We can see that hspatial is able to solve all the test problems with

76 Empirical Evaluation

Problem Difficulty (100 problems)
0

50000
100000
150000
200000
250000
300000
350000
400000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (100 problems)
0

5000

10000

15000

20000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (100 problems)
0

50

100

150

200

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (100 problems)
0

25

50

75

100

125

150

175
Total CPU Time for A*

hadd

LM-Cut
hspatial

Problem Difficulty (97 problems)
0

2

4

6

8

10

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

hspectral

Figure 5.13: Results for Blocksworld. hmax and hspectral are removed from the plots in the
second column.

4 to 20 balls. In comparison, none of the other heuristics are able to solve problems
with more than 13 balls.

The number of heuristic calls required by hspatial does not exponentially increase
as the problem size gets larger. In comparison, hspectral requires more heuristic calls on
average than all the other heuristics we evaluated Gripper on. This experiment clearly
exhibits the limited generalisation capability of spectral-based HGNs compared to
that of spatial-based HGNs. However, for the problems hspectral was able to solve, its
deviation from the optimal plan length was less than that for hspatial . This suggests
that the STRIPS-HGN for hspatial may be slightly overfitting to the training data with
1 to 3 balls, rather than learning generalisable knowledge for Gripper.

The average coverage was 0.59 for hmax, 0.59 for hadd, 0.41 for LM-Cut, 0.95 for
hspatial , and 0.48 for hspectral . We observed that the coverage of hspatial drops to 16/20
for the most difficult problem with 20 balls.

§5.3 Experimental Results 77

Problem Difficulty (89 problems)
0

50000

100000

150000

200000

250000
He

ur
ist

ic
Ca

lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (89 problems)
0

10000

20000

30000

40000

50000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (89 problems)
0

100

200

300

400

500

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (89 problems)
0

100

200

300

400

500
Total CPU Time for A*

hadd

LM-Cut
hspatial

Problem Difficulty (87 problems)
0

1

2

3

4

5

6

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.14: Results for Matching Blocksworld. The plots in the 2nd column remove hmax.

Moreover, it is interesting to note that across some experiments, the heuristic
estimates computed by hspatial seem to be scaled by a large constant as the problem
size increases. For example, in one experiment, hspatial gave a heuristic estimate of
510664 for the initial state in the problem with 20 balls. This strongly suggests that
although hspatial may seem to be providing nonsensical values, it still provides an
informative ranking of the states which helps A* find a plan in a relatively small
number of heuristic calls. Additionally, it may be fruitful to evaluate our heuristics on
greedy best-first search which considers the ranking of states given by our heuristic
estimates.

Hanoi

Hanoi is a domain where a STRIPS-HGN is unable to learn anything substantial and
hspatial subsequently provides uninformative heuristic estimates. This is depicted in

78 Empirical Evaluation

Problem Difficulty (17 problems)
0

200000

400000

600000

800000

1000000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (17 problems)
0

50

100

150

200

250

300

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

hspectral

Problem Difficulty (10 problems)
0

2

4

6

8

10

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

hspectral

Figure 5.15: Results for Gripper.

Problem Difficulty (8 problems)
0

10000

20000

30000

40000

50000

60000

70000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (8 problems)
0

50

100

150

200

250

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (8 problems)
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.16: Results for Hanoi.

Figure 5.16, where the curve for hspatial stops very early in comparison to the other
heuristics. The average coverage was 1 for hmax and hadd, 0.88 for LM-Cut, and 0.7 for
hspatial .

We can observe that that the deviation from the optimal plan length for hspatial is
significantly more than the deviation of hadd which is 0. This could suggest that the
network has overfitted to the problems in the training set. The more likely explanation
is that STRIPS-HGNs are unable to learn the recursive relationship required to easily
solve Hanoi problems.

Ferry

Figure 5.17 shows the results of the Ferry experiment we described in Section 5.2.5.
Both hmax and LM-cut struggle significantly on the test problems, as indicated by the
discontinuities of their respective curves.

§5.3 Experimental Results 79

On the other hand, hspatial is able to achieve coverage for all problems, and results
in substantially less heuristic calls than hmax and LM-cut. We observed that the
coverage of hspatial for the most difficult problem with 10 locations and 20 cars was
3/10. Additionally, the average coverage was 0.36 for hmax, 1 for hadd, 0.47 for LM-Cut,
and 0.77 for hspatial .

In line with the fact that the number of heuristic calls and CPU time for hspatial

is more than that required by hadd, the deviations from the optimal plan length for
hspatial is noticeably less than the deviations for hadd. To summarise, hspatial is able to
generalise to much larger problems than the STRIPS-HGN was trained on. However,
the performance of these trained networks may vary significantly as shown by the
confidence bounds, suggesting a more suitable training procedure should be adopted.

Problem Difficulty (36 problems)
0

50000
100000
150000
200000
250000
300000
350000
400000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (36 problems)
0

5000

10000

15000

20000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (36 problems)
0

25

50

75

100

125

150

175

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (36 problems)
0

25

50

75

100

125

150

175
Total CPU Time for A*

hadd

LM-Cut
hspatial

Problem Difficulty (17 problems)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.17: Results for Ferry. hmax is removed from the plots in the second column.

80 Empirical Evaluation

Zenotravel

The results for our Zenotravel experiments, which were described in Section 5.2.6, are
shown in Figure 5.18. Firstly, we may observe that hspatial significantly outperforms
hmax in terms of number of heuristic calls. As the problems become more difficult,
both hspatial and LM-cut are unable to find a plan in the limited search time. In
comparison hadd is able to find a near-optimal plan extremely quickly.

Despite this, the results of this experiment show that STRIPS-HGNs are able to
learn some form of knowledge which helps it generalise to problems of larger size,
and achieve a smaller deviation from the optimal plan length in comparison to hadd.
Moreover, the number of heuristic calls required for hspatial is comparable to the
heuristic calls required for LM-cut. The large spike in the confidence interval in the
plots for hspatial arise from the problems where hspatial achieved low coverage (e.g.
2/10 coverage). The average coverage was 0.55 for hmax, 1 for hadd, 0.82 for LM-Cut,
and 0.71 for hspatial .

§5.3 Experimental Results 81

Problem Difficulty (60 problems)
0

50000

100000

150000

200000

250000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (60 problems)
0

5000

10000

15000

20000

25000

30000

35000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (60 problems)
0

200

400

600

800

1000

1200

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (60 problems)
0

200

400

600

800

1000

1200

Total CPU Time for A*
hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.18: Results for Zenotravel. The discontinuities in a curve indicate problems which
were unsolvable. hmax is removed from the plots in the second column.

82 Empirical Evaluation

5.3.3 Learning Domain-Independent Heuristics

Training and Evaluating on Blocksworld, Zenotravel and Gripper

The results of our multi-domain experiments are shown in Figure 5.19 for Blocksworld,
Figure 5.20 for Zenotravel, and Figure 5.21 for Gripper. We may observe that hspatial

is able to generalise to larger problems across all three domains. The results we
achieved for our multi-domain experiments are, in general, similar to the results we
achieved in the domain-dependent experiments presented in Section 5.3.2.

For Blocksworld, the domain-independent heuristic we learn performs marginally
worse in terms of number of heuristic calls and CPU time than the domain-dependent
heuristic we learn (compare Figures 5.13 and 5.19). However, the average cover-
age for both approaches is extremely similar (0.95 for domain-dependent, 0.97 for
domain-independent). Additionally, the domain-independent heuristic achieves a
lower deviation from the optimal plan length. This may be attributed to the increased
number of nodes explored by A* with the domain-independent heuristic which is
not as ‘informative’ as the domain-dependent heuristic in terms of actual heuristic
values.

For Zenotravel, the domain-independent heuristic requires more heuristic calls
and CPU time than its equivalent domain-dependent heuristic (compare Figures 5.13
and 5.20). The domain-dependent heuristic achieves a slightly better average coverage
of 0.71 compared to 0.6 for the domain-independent heuristic. Both heuristics achieve
similar deviations from the optimal plan lengths.

For Gripper, the deviation from the optimal plan length for the domain-independent
heuristic we learned is surprisingly less than the deviation for the domain-dependent
heuristic we learned (compare Figures 5.15 and 5.21). This suggests that the domain-
dependent heuristic may have been overtrained, as we have shown it is possible to
learn a domain-independent heuristic that results in plans of lower cost. The aver-
age coverage for the domain-dependent heuristic was 0.95, and 0.69 for the domain-
independent heuristic. This suggests that the multi-domain STRIPS-HGN has learned
some knowledge which, although leads to shorter plans, is not sufficient to generalise
reliably across to larger problems.

Training on Zenotravel and Gripper, and evaluating on Blocksworld

Figure 5.22 shows the results of our multi-domain experiment where we trained
STRIPS-HGNs on Zenotravel and Gripper, and evaluated the networks on Blocksworld
problems with 4-8 blocks. Evidently, hspatial is able to generalise to all the test prob-
lems and requires fewer heuristic calls than hmax. The average coverage was 1 for
hmax, hadd and LM-Cut, and 0.87 for hspatial . The reduced average coverage for hspatial

arises from the fact that it begins to struggle with problems with 8 blocks where it
achieves an average coverage of 0.5.

The network seems to have learned a general procedure for aggregating vertex
(proposition) and hyperedge (action) features despite the fact that the latent represen-
tations of these features are likely not to be informative to Blocksworld.

§5.3 Experimental Results 83

Problem Difficulty (100 problems)
0

50000
100000
150000
200000
250000
300000
350000
400000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (100 problems)
0

5000

10000

15000

20000

Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (100 problems)
0

50

100

150

200

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (100 problems)
0

25
50
75

100
125
150
175
200

Total CPU Time for A*
hadd

LM-Cut
hspatial

Problem Difficulty (97 problems)
0

2

4

6

8

10

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.19: Results for Multi-Domain Blocksworld. hmax is removed from the plots in the
second column.

We observed that the heuristic values provided by hspatial for the Blocksworld
problems very occasionally hovered between -1 and 1. Despite this, the performance
of A* with hspatial suggests that the network is able to provide an informative ranking
for each state which helps it find plans with similar or lower costs than hadd.

84 Empirical Evaluation

Problem Difficulty (60 problems)
0

50000

100000

150000

200000

250000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (60 problems)
0

100

200

300

400

500

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0

2

4

6

8

10

12

14

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.20: Results for Multi-Domain
Zenotravel.

Problem Difficulty (17 problems)
0

200000

400000

600000

800000

1000000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (17 problems)
0

100

200

300

400

500

600

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (10 problems)
0

2

4

6

8

10

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.21: Results for Multi-Domain
Gripper.

§5.3 Experimental Results 85

Problem Difficulty (49 problems)
0

50000

100000

150000

200000

He
ur

ist
ic

Ca
lls

Number of Heuristic Calls with A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0

2000

4000

6000

8000

10000

12000
Number of Heuristic Calls with A*
hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0

50

100

150

200

250

Ti
m

e
(s

)

Total CPU Time for A*
hmax

hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0

50

100

150

200

250

Total CPU Time for A*
hadd

LM-Cut
hspatial

Problem Difficulty (49 problems)
0

5

10

15

20

Ac
tio

ns

Deviation from Optimal Plan Length with A*
hadd

hspatial

Figure 5.22: Results for Blocksworld where our STRIPS-HGNs were trained on Zenotravel
and Gripper. Problem bw-8-3326-7 is not shown due to the large confidence interval given
by the low coverage for hspatial , which skews the plots and makes it difficult to read the y-axes.
hmax is not shown in the plots for the 2nd column.

86 Empirical Evaluation

5.3.4 Discussion

Our experimental results show that we are able to train STRIPS-HGNs to learn
three classes of heuristics: problem-size dependent, domain-dependent, and domain-
independent heuristics.

Through our experiments for Sokoban, Blocksworld and Gripper, we have shown
that the generalisation capability of spectral-based HGNNs is limited. We would
expect this limitation to be extended to other planning domains, as HGNNs only
support undirected hypergraphs and perform convolutions using the normalised
incidence matrix which is an approximation of the hypergraph Laplacian.

In contrast, it is possible to train STRIPS-HGNs to learn domain-dependent and
domain-independent heuristics in a variety of domains. We showed that a network
trained on a set of small-sized problems is able to generalise to problems of much
larger sizes. Moreover, we showed it is possible for a STRIPS-HGN to provide infor-
mative heuristic estimates for states in a domain it was not trained on. We believe
the promising performance of STRIPS-HGNs may be traced back to our recurrent
encoding-processing-decoding architecture, which allows messages to be passed be-
tween the vertices and hyperedges in the hypergraph in a rich latent feature space.

Unlike existing approaches in deep learning for planning which learn which
actions to apply in a given state [Toyer et al., 2019; Issakkimuthu et al., 2018; Garg
et al., 2019], the heuristics we learn can be easily combined with any search algorithm
to provide formal guarantees. For example, using A* with hspatial guarantees that a
plan will be found if one exists. Although it is possible to combine an Action Schema
Network with Monte-Carlo Tree Search [Shen et al., 2019], learning heuristics allow
us to reason at a much lighter level.

Moreover, we have demonstrated that STRIPS-HGNs are able to learn informative
heuristics from simple features derived from a STRIPS problem. This is in contrast to
[Yoon et al., 2008] who learn heuristic functions based on the features extracted from
the relaxed plan of a problem, and [Gomoluch et al., 2017] who compute improve-
ments on hFF using MLPs (i.e., hFF is fed as input to the network).

Our work takes an important first step in investigating whether STRIPS-HGNs are
feasible for learning heuristics. Nevertheless, there are many avenues for future work
such as speeding up the time required to compute a heuristic estimate, and extending
our STRIPS-HGNs to probabilistic planning. We provide a detailed discussion of
potential future work in Section 6.2.

Chapter 6

Conclusion

In this chapter, we summarise the main contributions we have made in this the-
sis, and discuss promising directions for future research which aim to improve the
performance and generalisation power of STRIPS-HGNs.

6.1 Contributions

The main objective of this thesis has been to investigate the feasibility of applying
deep learning for learning heuristics in planning. We have shown that STRIPS-
HGNs are able to learn problem-size dependent, domain-dependent and domain-
independent heuristics by exploiting the hypergraph structure of a delete relaxed
STRIPS problem. By training a STRIPS-HGN on a small set of problems, the network
is able to generalise and compute informative heuristic estimates for larger problems
it was not trained on. Our work has made three key contributions:

1. Hypergraph Networks
Chapter 3 introduced Hypergraph Networks (HGNs), our novel framework
which generalises Graph Networks [Battaglia et al., 2018] to hypergraphs. A
Hypergraph Network is composed of HGN blocks, which are hypergraph-to-
hypergraph functions. A HGN block is designed to be extremely flexible, as we
may implement each update function and aggregation function in any manner
as long as they satisfy the input and output requirements of the block, and the
restrictions imposed by the HGN framework (i.e., aggregation functions must
be permutation invariant to the inputs). Moreover, we discussed how existing
state-of-the-art deep learning models for hypergraphs may be represented using
HGNs. Hypergraph Networks provides an important framework for comparing
and understanding the differences between existing hypergraph learning mod-
els, as well as providing an architecture for future research into designing more
powerful models which fully exploit the features and structure of a hypergraph.

2. STRIPS-HGNs: a Hypergraph Network for Learning Heuristics
STRIPS-HGNs is an instance of a Hypergraph Network which is designed
to learn heuristics by approximating shortest paths over the hypergraph in-
duced by the delete relaxation of a STRIPS problem. Each vertex in the hy-

87

88 Conclusion

pergraph represents a proposition, while each hyperedge represents an action.
A STRIPS-HGN uses a recurrent encode-process-decode architecture to incre-
mentally propagate the latent vertex and hyperedge features by using message
passing.

STRIPS-HGNs are very flexible as they do not impose any rules on the input
features for each vertex and hyperedge, and are agnostic to the implementation
of each update and aggregation function. In fact, we showed how STRIPS-
HGNs may be modified to learn which action to apply in a state rather than
compute a heuristic estimate.

The inherent design of a STRIPS-HGN supports combinatorial generalisation,
as the identical core HGN block is repeatedly applied to the latent hypergraph
– this is analogous to message passing. Hence, the receptive field of a STRIPS-
HGN may be increased or decreased by scaling the number of message passing
steps. This is a significant advantage over existing deep learning models for
planning, such as Action Schema Networks [Toyer et al., 2019], which have a
fixed receptive field that is determined by the number of hidden layers.

The major limitation of STRIPS-HGNs is that we cannot provide any guarantees
that the learned heuristic is admissible, as it is unfeasible to understand what a
network is exactly computing. Nevertheless, our results show that the heuristic
hspatial learned by a STRIPS-HGN is able to outperform hadd, hmax and LM-cut
for certain domains.

3. Extensive Empirical Evaluation
We firstly provided an extremely detailed description of our experimental setup,
which included our training procedure which performs binning and stratified k-
Fold to reduce any potential noise and demonstrate robustness over the training
set used. Next, we trained and evaluated both spectral-based Hypergraph
Neural Networks and spatial-based STRIPS-HGNs on a variety of domains.
Our results demonstrated the weak generalisation capability of a spectral-based
HGNN to problems larger than the problems the network was trained on. We
observed that the only advantage of spectral-based HGNNs over STRIPS-HGNs

is that it is computationally cheaper to train and evaluate.

Our experiments show that STRIPS-HGNs are able to learn problem-size de-
pendent, domain-dependent, and domain-independent heuristics. We showed
that the heuristic hspatial learned by a STRIPS-HGN generalises to problems of
much larger size than the problems the network was trained on. For all do-
mains except for Hanoi, the heuristic hspatial learned by a STRIPS-HGN requires
substantially less heuristic calls than hmax and yet provides near-optimal plans.
In general, hspatial required a similar number of heuristic calls to LM-cut, but
in certain experiments including Blocksworld and Gripper, hspatial required less
heuristic calls than all the baselines hmax, hadd and LM-cut.

Unfortunately, hspatial is not very competitive with the baseline heuristics in
terms of CPU time due to our sub-optimal implementation and the unavoidable

§6.2 Future Work 89

cost of message passing in a large hypergraph. Despite this, our results show
that it is feasible for a STRIPS-HGN to learn knowledge which helps it com-
pute informative heuristic estimates, and hence opens up a wealth of potential
directions for future research.

6.2 Future Work

Now, we discuss several promising directions for future research which range from
improving the planning performance of STRIPS-HGNs, to extending STRIPS-HGNs

to probabilistic planning.

6.2.1 Speeding up a STRIPS-HGN

Hypergraph Pruning

One limitation of STRIPS-HGNs is that the time required to compute a heuristic
increases as the number of vertices and hyperedges in a hypergraph increase. This
may be attributed to our message passing scheme, which ensures that messages are
passed between all vertices and hyperedges in the hypergraph.

Furthermore, STRIPS-HGNs require the entire hypergraph structure of a delete
relaxed STRIPS problem to be passed as input to a network. This is in contrast to
hmax and hadd, whose implementations implicitly generate intermediate subsets of the
hypergraph as they incrementally compute a heuristic value. This suggests that the
entire hypergraph structure may not be required as input to STRIPS-HGNs, especially
since it is only feasible to perform a limited number of message passing steps.

Future work could investigate whether it is possible to prune extraneous propo-
sitions and actions from a problem to reduce the size of its hypergraph – this may
substantially decrease the time required by a STRIPS-HGN to compute a heuristic
estimate. Moreover, it may be possible to restrict message passing to a subset of ver-
tices and hyperedges in the hypergraph. We could determine this subset by analysing
which vertices and hyperedges which have received a ‘signal’ from the vertices in the
initial or goal state. Such an approach would ideally be able to adaptively scale to
the size of the hypergraph based on the number of message passing steps we use.

Implementation-based Optimisations

As we mentioned in Section 5.1, our current implementation of Hypergraph Networks
is not optimal, and hence may be sped up. A more optimised implementation would
result in a reduction in the CPU time required to compute a single heuristic estimate,
which currently hovers around 0.01 to 0.02 seconds for a hypergraph with several
hundred vertices and hyperedges.

The evaluation of our learned heuristics and baseline heuristics should also be
performed in Fast Downward [Helmert, 2006] rather than Pyperplan [Alkhazraji
et al., 2011]. Fast Downward is a state-of-the-art classical planner, while Pyperplan

90 Conclusion

is designed to be more of a teaching tool rather than the best planner. Evidently, we
found that the implementations of hadd, hmax and LM-cut in Pyperplan are several
times slower than their counterparts in Fast Downward.

Additionally, we could investigate how we may exploit multiple CPU cores or
even a GPU to parallelise the tensor operations required in the HGN blocks within
a STRIPS-HGN. Doing so would require batching together operations to ensure the
overheads of multiprocessing do not outweigh the benefits of parallel computations.
Ideally, we would observe a speed-up in both training and evaluation time as a result
of using more powerful hardware.

6.2.2 Improving the performance of STRIPS-HGNs

Similar to all deep learning models, there are countless hyperparameters in a STRIPS-
HGN which may be tuned including the number of message passing steps, the
implementation of each update and aggregation function, the hidden dimensionalities
of vertices and hyperedges, etc. We outline potential future work which we believe
may vastly improve the performance of STRIPS-HGNs below.

Master Vertex

The receptive field of a STRIPS-HGN is effectively limited by the number of message
passing steps we perform. This means that if the number of message passing steps
is less than the optimal heuristic value for a given state, then signals from the initial
propositions are unable to reach all the goal propositions.

Gilmer et al. [2017] propose a potential solution to this problem by creating a new
“master" vertex which is connected to every other vertex in the hypergraph with a
special hyperedge type. This master vertex, which would have a very high feature
dimensionality, would act as a global scratch space for vertices to read and write to
in each step of message passing. This would in theory, allow signals to “travel long
distances" even for a small number of message passing steps [Gilmer et al., 2017].

We expect that a STRIPS-HGN with a master vertex will be able to provide more
accurate heuristic estimates than a vanilla STRIPS-HGN. Although the master vertex
approach would be more computationally expensive to train and evaluate, this in-
creased time may pay off if the heuristic estimates are vastly better than the estimates
of a vanilla STRIPS-HGN. Subsequently, this would allow a search algorithm find a
solution in less CPU time and heuristic calls.

Proposition and Action Features

The networks in our experiments use very simple features derived from a STRIPS
problem. It may be possible to improve the generalisation capability and planning
performance of a STRIPS-HGN by using a set of richer input features.

We could include fact landmarks as features for propositions and action land-
marks as features for actions in a hypergraph – these would be computed using
LM-cut [Helmert and Domshlak, 2009]. This approach would be similar to Action

§6.2 Future Work 91

Schema Networks, which use action landmarks to increase a network’s theoretical
receptive field and improve its generalisation ability. Alternatively, another option
could be to supplement a STRIPS-HGN with a heuristic value calculated by another
heuristic such as LM-Cut or hFF [Hoffmann, 2001]. The resulting problem would be
equivalent to learning an improvement over these heuristics, rather than learning a
heuristic from scratch.

Although using features computed by a different planning heuristic arguably
defeats the purpose of learning a heuristic based solely from the structure of the
hypergraph, the heuristics learned from a richer set of input features may lead to
improved planning performance and generalisation across problem size and domains.

Improved Training Procedure

Firstly, our current training procedure is not very efficient as we not only train a
separate network for each fold given by stratified k-Fold, but also only select one of
these networks for evaluation. This means that precious training time is discarded in
an effort to improve model stability. Moreover, we observed that the performance of
a STRIPS-HGN may vary significantly across multiple runs of the same experiment.
This behaviour could be attributed to a poor choice of hyperparameters, such as a
learning rate that is too high or a batch size that is too small.

We believe there is definitely room for improvement in our training procedure.
These improvements could involve defining a more sophisticated algorithm which
splits the training data in a consistent manner that guarantees each partition is an
accurate representation of the dataset. A more reasoned study should also be carried
out to determine how the choice of hyperparameters for a STRIPS-HGN and the
training procedure may affect the performance of the network.

Guaranteeing the Invariance of STRIPS-HGNs

In Section 5.1, we argued that STRIPS-HGNs with Multilayer perceptrons (MLP) as
the update functions are invariant to the renaming of objects and actions, but are not
invariant to the renaming of the predicates (propositions) in the domain definition.
This is because MLPs are not permutation invariant to the ordering of the inputs –
that is, different orderings of the same input give different outputs. The alphabetical
sorting procedure we imposed on the proposition names of the vertices may lead to
an altered ordering if we rename the predicates in the domain definition.

Invariance is an important property of any heuristic, as it guarantees that identical
heuristic values are returned for isomorphic states in a set of isomorphic problems.
Future work should investigate a suitable implementation for each update function
which guarantees permutation invariance to the ordering of the inputs. This could be
achieved through DeepSets [Zaheer et al., 2017], or a fixed transform matrix which
outputs the same weights for vertex features regardless of their ordering [Jiang et al.,
2019].

92 Conclusion

6.2.3 Extending STRIPS-HGNs beyond STRIPS problems

Finite Domain Representation (FDR) Planning

Steinmetz and Torralba [2019] showed that it is possible to generalise abstraction
and critical-path heuristics to hypergraphs for FDR planning tasks. Their work
introduced hyperabstractions, heuristics which approximate goal distances based on
the fundamental ideas behind abstraction and critical-path heuristics.

It may be possible to learn better approximations of the shortest path over the
B-hypergraphs and F-hypergraphs they define by using Hypergraph Networks. This
would require extending STRIPS-HGNs to support multi-valued propositions for
each vertex.

Probabilistic Planning

Probabilistic planning is an extension of classical planning where actions have stochas-
tic outcomes. It is possible to apply delete-relaxation heuristics defined for classical
planning to probablistic planning through determinisation. Determinisation relaxes
a probabilistic problem into a deterministic one by either choosing a single outcome
for each probabilistic action (single-outcome determinisation), or decomposing each
outcome of a probabilistic action into a separate deterministic action (all-outcomes
determinisation) [Keller and Eyerich, 2011]. Evidently, heuristics which rely on de-
terminisation ignore the true probabilities of outcomes and unintended side-effects
of the probabilistic actions when computing a heuristic value. Instead, the deter-
minisation of the problem allows the heuristic to choose the most convenient path.
Current state-of-the-art heuristics in probabilistic planning which do not perform
determinisation, such as hpom and hroc [Trevizan et al., 2017], are difficult to construct
and can be expensive to compute.

It is possible to model computing a heuristic estimate in probabilistic planning
as approximating the shortest path over the hypergraph induced by a Stochastic
Shortest Path problem (SSP) [Bertsekas and Tsitsiklis, 1991]. We may represent the
hypergraph induced by a SSP as the collection of hyperedges defined by the scheme
depicted in Figure 6.1 – vertices in the hypergraph now represent propositions or
actions, while hyperedges represent an aggregation of preconditions or individual
stochastic outcomes.

We may redesign STRIPS-HGNs to support this hypergraph structure, and train
a network to learn an aggregation of propositions conditioned on the probabilities
of each action. This would hopefully provide more accurate heuristic estimates than
determinisation-based heuristics.

6.3 Final Remarks

We have introduced Hypergraph Networks, a framework for designing deep learning
models which operate over hypergraphs. Using HGNs, we have successfully shown
that it is feasible to learn heuristics for planning with STRIPS-HGNs. Our work

§6.3 Final Remarks 93

PRE1

PRE2

PRE3

Action
a

C(a) = 1

EFF1

EFF2

EFF3

EFF4

0.5

0.2

0.3

Figure 6.1: Example of a potential hyperedge representation for a probabilistic action a with
3 preconditions, 3 stochastic outcomes, and a cost of C(a) = 1 in a SSP. Note that the action
is now an explicit vertex which ‘receives’ preconditions, and ‘sends’ stochastic outcomes.

represents an important first step in learning heuristics which are able generalise
across problems of different sizes and across different domains.

We have discussed multiple potential directions for future work which aim to
additionally improve the planning performance of STRIPS-HGNs and extend them
beyond classical planning to probabilistic planning. We hope that this thesis further
bridges the gap between planning and machine learning.

94 Conclusion

List of Figures

2.1 An example of a multilayer perceptron with three neurons in the input
layer, a single hidden layer with 4 neurons, and two neurons in the
output layer. Each arrow represents a weight in the MLP which needs
to be learned. Diagram from https://commons.wikimedia.org/wiki/File:
Colored_neural_network.svg . 10

3.1 Example of a directed hyperedge e = (T, H) where Tail(e) = T =
{v1, v2, v3} and Head(e) = H = {v4, v5}. 20

3.2 Example of a directed hypergraph and its corresponding incidence
matrix [Gallo et al., 1993]. Note that the hyperedge E5 has an empty
head. 21

3.3 Illustration of a single hyperedge convolutional layer from Figure 4 of
[Feng et al., 2019]. 22

3.4 Illustration of a single convolution on a vertex v using HyperGCN
for epoch τ (Figure 1 in [Yadati et al., 2018]). Θ is a trainable weight
matrix, A is the normalised adjacency matrix of the standard graph
obtained from decomposing the hypergraph, and hi and hj are the
hidden representations of the vertices ie and ij, respectively. For each
hyperedge e at a given epoch τ, HyperGCN selects the standard edge
where the hidden representations of the vertices differ the most, as
defined by the equation given in the ‘hypergraph Laplacian operator’
step. HyperGCN then applies a standard Graph Convolutional layer
over the resulting graph. 24

3.5 The Vertex Convolution module (left) and Hyperedge Convolution
module (right) of a DHGNN. Taken from Figure 3 and 4 of [Jiang et al.,
2019]. 26

3.6 Example of a Hypergraph represented in a Hypergraph Network (adap-
tation of Figure 2 from Battaglia et al. [2018]). The attributes are prop-
erties of the entity it represents, and could be encoded as vectors,
matrices, sets, etc. 30

3.7 The full Hypergraph Network block configuration which predicts global,
vertex and hyperedge outputs based on the incoming global, vertex and
hyperedge attributes [Battaglia et al., 2018]. The incoming arrows to an
update function φ represent the inputs it receives. 32

95

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg

96 LIST OF FIGURES

3.8 A HGNN hyperedge convolutional layer represented as a HGN block.
The dotted line to E′ represents the hidden hyperedge representation
which is implicitly computed by the layer’s vertex-hyperedge-vertex
transform (Figure 3.3). As the matrix L = D−1/2

v HWD−1
e HTD−1/2

v
stays constant for a given hypergraph, it can be stored in the global
attributes u of the hypergraph and propagated unmodified. 34

3.9 A graph convolution layer in a 1-HyperGCN. The hypergraph Lapla-
cian block converts the hypergraph into a standard graph by selecting
the “most representative" pair of vertices for each hyperedge. The
Graph Convolutional Network computes a new feature for each vertex
in this standard graph. The red update functions across the two blocks
indicate that they share the same weights Θ. 35

3.10 A DHGNN hypergraph convolution module represented as two se-
quential HGN blocks for vertex convolution and hyperedge convolu-
tion. The vertex convolution block uses the vertex features and struc-
ture of the hypergraph to compute new hyperedge features. The hy-
peredge convolution block uses the hyperedges and structure of the
hypergraph to compute new vertex features. 36

4.1 Example of the hyperedge generated by Algorithm 2 for an action o
with 3 preconditions and 4 positive effects, and a cost c(o) = 1. 40

4.2 The architecture for a STRIPS-HGN, which uses a recurrent “Encode-
process-decode" architecture (modified from Figure 6c in [Battaglia
et al., 2018]). The merging line for G0

hid and Gt−1
hid indicates concate-

nation, while the splitting lines that are output by the HGNcore block
indicates copying (i.e., the same output is passed to different locations).
The grey dotted line indicates that the output Gt

hid is used as input to
the HGNcore block in the next time step t + 1. 44

4.3 The Encoding and Decoding blocks of a STRIPS-HGN. An encoder
block independently encodes the vertex and hyperedge features into
latent space, while the decoder block decodes the latent global features
into a single heuristic value. Figure 4.2 shows how these blocks are
used by a STRIPS-HGN in relation to the core processing block. 45

4.4 The Core processing block of a STRIPS-HGN, which computes per-
hyperedge and per-vertex updates using the concatenated input hyper-
graph. The processing block additionally computes the global attribute
ut

hid using the aggregated vertex and hyperedge features. ut
hid repre-

sents the latent features for the heuristic value. The global attribute
ut−1

hid computed in the previous time step is not used by the core block.
[x, y] refers to the concatenation of x and y. Figure 4.2 depicts how the
core block is used by a STRIPS-HGN in relation to the encoder and
decoder blocks. 46

LIST OF FIGURES 97

5.1 The architecture of our spectral-based network for learning heuristics.
The numbers below each layer represent its input vertex dimensionality
and output vertex dimensionality. L is the normalised incidence matrix
which is only used by the HGNN layers. 55

5.2 The MLP architecture used by all the update functions in a STRIPS-
HGN. The numbers below each layer represent its input dimensional-
ity and output dimensionality; the dimensionality of the input to the
MLP is d. There are two fully connected layers, each followed by the
LeakyReLU activation function. 56

5.3 The concatenated features for a single hyperedge which is the input
to the Hyperedge-level MLP in the core processing block of a STRIPS-
HGN. We assume Nsender = Nreceiver = 2. If a hyperedge contains only
a single receiver vertex, we insert the latent feature for that vertex into
the space between x65 and x128, and set all elements between x129 and
x192 to 0 (zero padding). On the other hand, if a hyperedge contains
two receiver vertices, we firstly alphabetically sort the latent vertex
features by their proposition names. We then insert the features of the
first vertex between x65 and x128, and the features of the second vertex
between x129 and x192. 58

5.4 Two isomorphic Blocksworld problems where the blocks and predi-
cates have different names. 60

5.5 Example of a Blocksworld problem with 4 blocks, along with the ac-
tions in an optimal plan. 64

5.6 Example of a Gripper problem with 2 balls, along with the optimal plan.
Note that actions have been abbreviated from their original domain
definition for simplicity. 65

5.7 Example of a Hanoi problem with 3 disks, along with the seven states
in the optimal plan. 66

5.8 Example of an 8-puzzle problem along with its optimal plan. Figure
taken from https://www.cs.princeton.edu/courses/archive/spring18/cos226/
assignments/8puzzle/index.html . 68

5.9 Example of a Sokoban problem with 1 box and a grid size of 7. The
steps for an optimal plan are indicated in each diagram, where the solid
arrows depict the agent moving while the dotted arrow represents the
agent pushing the box. The walls are indicated in blue, the box in
orange, and the goal position in green. 69

5.10 The aggregation of 3-folds from 3 separate domains into 3 merged folds. 70

5.11 Results for n-puzzle with n = 8 tiles. hmax is removed from the plots in
the 2nd column so we can focus on the results for the other heuristics.
Note, that the same colour is used for each heuristic across all of our
plots. 73

https://www.cs.princeton.edu/courses/archive/spring18/cos226/assignments/8puzzle/index.html
https://www.cs.princeton.edu/courses/archive/spring18/cos226/assignments/8puzzle/index.html

98 LIST OF FIGURES

5.12 Results for Sokoban. hspatial is removed from the plots in the second
column. When analysing these plots, it is important to remember that
a single STRIPS-HGN is trained on problems with a grid size of 5 and
7, and evaluated on all test problems with a grid size of 5, 7, and 8. In
contrast, a separate HGNN is trained and evaluated for each of these
grid sizes (see Section 5.9 for details). 74

5.13 Results for Blocksworld. hmax and hspectral are removed from the plots
in the second column. 76

5.14 Results for Matching Blocksworld. The plots in the 2nd column remove
hmax. 77

5.15 Results for Gripper. 78
5.16 Results for Hanoi. 78
5.17 Results for Ferry. hmax is removed from the plots in the second column. 79
5.18 Results for Zenotravel. The discontinuities in a curve indicate problems

which were unsolvable. hmax is removed from the plots in the second
column. 81

5.19 Results for Multi-Domain Blocksworld. hmax is removed from the plots
in the second column. 83

5.20 Results for Multi-Domain Zenotravel. 84
5.21 Results for Multi-Domain Gripper. 84
5.22 Results for Blocksworld where our STRIPS-HGNs were trained on

Zenotravel and Gripper. Problem bw-8-3326-7 is not shown due
to the large confidence interval given by the low coverage for hspatial ,
which skews the plots and makes it difficult to read the y-axes. hmax is
not shown in the plots for the 2nd column. 85

6.1 Example of a potential hyperedge representation for a probabilistic
action a with 3 preconditions, 3 stochastic outcomes, and a cost of
C(a) = 1 in a SSP. Note that the action is now an explicit vertex which
‘receives’ preconditions, and ‘sends’ stochastic outcomes. 93

List of Tables

2.1 Relational inductive biases in standard deep learning components.
Modified from Table 1 in [Battaglia et al., 2018]. 12

5.1 Input dimensionalities for the MLPs in the Encoding, Core, and Decod-
ing HGN blocks of a STRIPS-HGN. Nreceiver and Nsender are the maxi-
mum number of receivers and senders for all hyperedges, respectively.
∅ indicates that the block does not contain a MLP for the correspond-
ing update function. 58

5.2 The classes of heuristics we learn in our experiments, along with the
domains we use in these experiments. 63

99

100 LIST OF TABLES

Bibliography

Alkhazraji, Y.; Frorath, M.; Grützner, M.; Liebetraut, T.; Ortlieb, M.; Seipp, J.;
Springenberg, T.; Stahl, P.; and Wülfing, J., 2011. Pyperplan. https://bitbucket.
org/malte/pyperplan. (cited on pages 54 and 89)

Arfaee, S. J.; Zilles, S.; and Holte, R. C., 2010. Bootstrap learning of heuristic
functions. In Third Annual Symposium on Combinatorial Search. (cited on page 16)

Bai, S.; Zhang, F.; and Torr, P. H., 2019. Hypergraph convolution and hypergraph
attention. arXiv preprint arXiv:1901.08150, (2019). (cited on page 22)

Bajpai, A. N.; Garg, S.; and Mausam, 2018. Transfer of deep reactive policies for
mdp planning. In Advances in Neural Information Processing Systems, 10965–10975.
(cited on page 16)

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.;
Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; et al.,
2018. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, (2018). (cited on pages vii, 3, 4, 12, 13, 19, 28, 29, 30, 31, 32, 33,
37, 44, 47, 50, 87, 95, 96, and 99)

Bertsekas, D. P. and Tsitsiklis, J. N., 1991. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16, 3 (1991), 580–595. (cited on page
92)

Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S., 2005. Course of action generation for
cyber security using classical planning. In Proceedings of the Fifteenth International
Conference on International Conference on Automated Planning and Scheduling, ICAPS’05
(Monterey, California, USA, 2005), 12–21. AAAI Press. http://dl.acm.org/citation.cfm?
id=3037062.3037065. (cited on page 1)

Bonet, B. and Geffner, H., 2001. Planning as heuristic search. Artificial Intelligence,
129, 1-2 (2001), 5–33. (cited on pages 7 and 40)

Boser, B. E.; Guyon, I. M.; and Vapnik, V. N., 1992. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory, 144–152. ACM. (cited on page 17)

Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan, K., 2005. Activity planning
for the mars exploration rovers. In International Conference on International Conference
on Automated Planning and Scheduling. (cited on page 1)

101

https://bitbucket.org/malte/pyperplan
https://bitbucket.org/malte/pyperplan
http://dl.acm.org/citation.cfm?id=3037062.3037065
http://dl.acm.org/citation.cfm?id=3037062.3037065

102 Bibliography

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y., 2013. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, (2013). (cited
on page 13)

Bylander, T., 1994. The computational complexity of propositional strips planning.
Artificial Intelligence, 69, 1-2 (1994), 165–204. (cited on page 6)

Chan, T.-H. H.; Louis, A.; Tang, Z. G.; and Zhang, C., 2018. Spectral properties
of hypergraph laplacian and approximation algorithms. J. ACM, 65, 3 (Mar. 2018),
15:1–15:48. doi:10.1145/3178123. http://doi.acm.org/10.1145/3178123. (cited on page
23)

Culberson C., J., 1997. Sokoban is pspace-complete. Technical report. (cited on page
69)

Defferrard, M.; Bresson, X.; and Vandergheynst, P., 2016. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in neural
information processing systems, 3844–3852. (cited on page 13)

Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.;
Aspuru-Guzik, A.; and Adams, R. P., 2015. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neural information processing systems,
2224–2232. (cited on page 14)

Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y., 2019. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 3558–3565.
(cited on pages 19, 21, 22, 23, 59, and 95)

Fern, A.; Khardon, R.; and Tadepalli, P., 2011. The first learning track of the
international planning competition. Machine Learning, 84, 1-2 (2011), 81–107. (cited
on pages 64, 65, 68, and 69)

Fikes, R. E. and Nilsson, N. J., 1971. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2, 3-4 (1971), 189–208.
(cited on pages 1 and 6)

Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommerening, F., 2019. General-
ized potential heuristics for classical planning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, 5554–5561. (cited on page 9)

Gallo, G.; Longo, G.; Pallottino, S.; and Nguyen, S., 1993. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42, 2 (1993), 177 – 201. doi:https:
//doi.org/10.1016/0166-218X(93)90045-P. http://www.sciencedirect.com/science/article/
pii/0166218X9390045P. (cited on pages 19, 21, and 95)

Garg, S.; Bajpai, A.; and Mausam, 2019. Size independent neural transfer for RDDL
planning. In Proceedings of the Twenty-Ninth International Conference on Automated

http://dx.doi.org/10.1145/3178123
http://doi.acm.org/10.1145/3178123
http://dx.doi.org/https://doi.org/10.1016/0166-218X(93)90045-P
http://dx.doi.org/https://doi.org/10.1016/0166-218X(93)90045-P
http://www.sciencedirect.com/science/article/pii/0166218X9390045P
http://www.sciencedirect.com/science/article/pii/0166218X9390045P

Bibliography 103

Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019., 631–636.
(cited on pages 16 and 86)

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T., 2016. Learning to rank for
synthesizing planning heuristics. arXiv preprint arXiv:1608.01302, (2016). (cited on
pages 17 and 48)

Geffner, H. and Bonet, B., 2013. A concise introduction to models and methods for
automated planning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
8, 1 (2013), 1–141. (cited on pages 1, 5, 6, 7, and 9)

Geissmann, C., 2015. Learning Heuristic Functions in Classical Planning. Master’s thesis,
University of Basel. (cited on pages 16 and 17)

Ghallab, M.; Howe, A.; Knoblock, C.; Mcdermott, D.; Ram, A.; Veloso, M.; Weld,
D.; and Wilkins, D., 1998. PDDL—The Planning Domain Definition Language.
Technical report. (cited on page 7)

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and Dahl, G. E., 2017. Neural
message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 1263–1272. JMLR. org. (cited on pages
13, 14, 22, 28, 33, 34, 44, 45, and 90)

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A., 2017. Towards
learning domain-independent planning heuristics. arXiv preprint arXiv:1707.06895,
(2017). (cited on pages 17, 42, and 86)

Goodfellow, I.; Bengio, Y.; and Courville, A., 2016. Deep learning. (cited on page
11)

Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and Abbeel, P., 2018. Learn-
ing generalized reactive policies using deep neural networks. In 2018 AAAI Spring
Symposium Series. (cited on pages 2, 15, and 16)

Hamrick, J. B.; Allen, K. R.; Bapst, V.; Zhu, T.; McKee, K. R.; Tenenbaum, J. B.;
and Battaglia, P. W., 2018. Relational inductive bias for physical construction in
humans and machines. arXiv preprint arXiv:1806.01203, (2018). (cited on page 43)

Hart, P. E.; Nilsson, N. J.; and Raphael, B., 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4, 2 (July 1968), 100–107. doi:10.1109/TSSC.1968.300136. (cited on pages
7 and 8)

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; Koenig, S.; et al., 2007. Domain-
independent construction of pattern database heuristics for cost-optimal planning.
(cited on page 9)

http://dx.doi.org/10.1109/TSSC.1968.300136

104 Bibliography

Haslum, P. and Geffner, H., 2000. Admissible heuristics for optimal planning. In
Proceedings of the 5th International Conference of AI Planning Systems. (cited on pages
8 and 41)

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), ICCV ’15, 1026–1034. IEEE
Computer Society, Washington, DC, USA. doi:10.1109/ICCV.2015.123. http://dx.doi.
org/10.1109/ICCV.2015.123. (cited on page 56)

Helmert, M., 2006. The fast downward planning system. Journal of Artificial Intelli-
gence Research, 26 (2006), 191–246. (cited on pages 54 and 89)

Helmert, M., 2008. Understanding planning tasks: domain complexity and heuristic
decomposition, vol. 4929. Springer. (cited on page 67)

Helmert, M. and Domshlak, C., 2009. Landmarks, critical paths and abstractions:
what’s the difference anyway? In Nineteenth International Conference on Automated
Planning and Scheduling. (cited on pages 8, 9, and 90)

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural compu-
tation, 9, 8 (1997), 1735–1780. (cited on page 2)

Hoffmann, J., 2001. Ff: The fast-forward planning system. AI magazine, 22, 3 (2001),
57–57. (cited on pages 17 and 91)

Iba, G. A., 1989. A heuristic approach to the discovery of macro-operators. Machine
Learning, 3, 4 (1989), 285–317. (cited on page 68)

Issakkimuthu, M.; Fern, A.; and Tadepalli, P., 2018. Training deep reactive policies
for probabilistic planning problems. In Twenty-Eighth International Conference on
Automated Planning and Scheduling. (cited on pages 16 and 86)

Jiang, J.; Wei, Y.; Feng, Y.; Cao, J.; and Gao, Y., 2019. Dynamic hypergraph neural
networks. In Proceedings of International Joint Conferences on Artificial Intelligence.
(cited on pages 25, 26, 27, 91, and 95)

Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T., 2016. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, (2016). (cited on page 2)

Keller, T. and Eyerich, P., 2011. A polynomial all outcome determinization for
probabilistic planning. In Twenty-First International Conference on Automated Planning
and Scheduling. (cited on page 92)

Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L., 2017. Learning combi-
natorial optimization algorithms over graphs. In Advances in Neural Information
Processing Systems, 6348–6358. (cited on page 16)

http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123

Bibliography 105

Kingma, D. P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, (2014). (cited on pages 50 and 61)

Kipf, T. N. and Welling, M., 2017. Semi-supervised classification with graph con-
volutional networks. In International Conference on Learning Representations (ICLR).
(cited on pages 13, 14, 22, 23, and 34)

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., 2012. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, 1097–1105. (cited on pages 2 and 12)

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al., 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86, 11 (1998), 2278–2324.
(cited on pages 2 and 12)

Li, M.; Zhang, T.; Chen, Y.; and Smola, A. J., 2014. Efficient mini-batch training
for stochastic optimization. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14 (New York, New York,
USA, 2014), 661–670. ACM, New York, NY, USA. doi:10.1145/2623330.2623612.
http://doi.acm.org/10.1145/2623330.2623612. (cited on page 51)

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R., 2015. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, (2015). (cited on page 14)

Li, Z.; Chen, Q.; and Koltun, V., 2018. Combinatorial optimization with graph
convolutional networks and guided tree search. In Advances in Neural Information
Processing Systems, 539–548. (cited on page 16)

Long, D. and Fox, M., 1999. Efficient implementation of the plan graph in stan.
Journal of Artificial Intelligence Research, 10 (1999), 87–115. (cited on page 67)

Long, D. and Fox, M., 2003. The 3rd international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20 (2003), 1–59. (cited on page 68)

Long, D.; Kautz, H.; Selman, B.; Bonet, B.; Geffner, H.; Koehler, J.; Brenner, M.;
Hoffmann, J.; Rittinger, F.; Anderson, C. R.; et al., 2000. The aips-98 planning
competition. AI magazine, 21, 2 (2000), 13–13. (cited on page 65)

Luks, E. M., 1999. Hypergraph isomorphism and structural equivalence of boolean
functions. In STOC. Citeseer. (cited on page 59)

Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M., 2019. Online planner se-
lection with graph neural networks and adaptive scheduling. arXiv preprint
arXiv:1811.00210, (2019). (cited on page 15)

Maas, A. L.; Hannun, A. Y.; and Ng, A. Y., 2013. Rectifier nonlinearities improve
neural network acoustic models. In International Conference on Machine Learning
(ICML). (cited on page 55)

http://dx.doi.org/10.1145/2623330.2623612
http://doi.acm.org/10.1145/2623330.2623612

106 Bibliography

Mausam and Kolobov, A., 2012. Planning with Markov Decision Processes: An AI
Perspective. Morgan & Claypool Publishers. ISBN 1608458865, 9781608458868.
(cited on page 5)

Nair, V. and Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), 807–814. (cited on pages 11 and 22)

Pearl, J., 1984. Heuristics: intelligent search strategies for computer problem solving.
(1984). (cited on page 54)

Pierrot, T.; Ligner, G.; Reed, S. E.; Sigaud, O.; Perrin, N.; Laterre, A.; Kas, D.; Be-
guir, K.; and de Freitas, N., 2019. Learning compositional neural programs with
recursive tree search and planning. In Conference on Neural Information Processing
Systems. (cited on page 66)

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J., 2015. From non-negative
to general operator cost partitioning. In Twenty-Ninth AAAI Conference on Artificial
Intelligence. (cited on page 9)

Ratner, D. and Warmuth, M., 1986. Finding a shortest solution for the nxn extension
of the 15-puzzle is intractable. In Proceedings of the Fifth AAAI National Conference on
Artificial Intelligence, AAAI’86 (Philadelphia, Pennsylvania, 1986), 168–172. AAAI
Press. http://dl.acm.org/citation.cfm?id=2887770.2887797. (cited on page 68)

Richter, S. and Westphal, M., 2010. The lama planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39 (2010), 127–177.
(cited on page 42)

Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P., 2011. On-line planning and
scheduling: An application to controlling modular printers. Journal of Artificial
Intelligence Research, 40 (2011), 415–468. (cited on page 1)

Russell, S. J. and Norvig, P., 2016. Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,. (cited on page 7)

Sanner, S., 2011. Relational dynamic influence diagram language (rddl): Language
description. Technical report, NICTA and the Australian National University. (cited
on page 16)

Shen, W.; Trevizan, F.; Toyer, S.; Thiébaux, S.; and Xie, L., 2019. Guiding Search
with Generalized Policies for Probabilistic Planning. In Proc. of 12th Annual Symp.
on Combinatorial Search (SoCS). (cited on pages 3, 47, and 86)

Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Ferber, P., 2019. Deep learn-
ing for cost-optimal planning: Task-dependent planner selection. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence. (cited on pages 2 and 15)

http://dl.acm.org/citation.cfm?id=2887770.2887797

Bibliography 107

Slaney, J. and Thiébaux, S., 2001. Blocks world revisited. Artificial Intelligence, 125,
1-2 (2001), 119–153. (cited on page 64)

Steinmetz, M. and Torralba, A., 2019. Bridging the gap between abstractions and
critical-path heuristics via hypergraphs. In International Conference on Automated
Planning and Scheduling. (cited on pages 41 and 92)

Toyer, S., 2017. Generalised policies for probabilistic planning with deep learning.
(cited on page 10)

Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L., 2019. Asnets: Deep learning for
generalised planning. CoRR, abs/1908.01362 (2019). http://arxiv.org/abs/1908.01362.
(cited on pages 2, 16, 45, 47, 86, and 88)

Trevizan, F.; Thiébaux, S.; and Haslum, P., 2017. Occupation measure heuristics
for probabilistic planning. In Twenty-Seventh International Conference on Automated
Planning and Scheduling. (cited on page 92)

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; and Bengio, Y.,
2018. Graph Attention Networks. International Conference on Learning Representations,
(2018). https://openreview.net/forum?id=rJXMpikCZ. (cited on page 16)

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S., 2019. A comprehensive
survey on graph neural networks. arXiv preprint arXiv:1901.00596, (2019). (cited on
pages 12, 13, 14, and 23)

Xu, F.; He, F.; Xie, E.; and Li, L., 2018. Fast obdd reordering using neural message
passing on hypergraph. arXiv preprint arXiv:1811.02178, (2018). (cited on page 28)

Yadati, N.; Nimishakavi, M.; Yadav, P.; Louis, A.; and Talukdar, P., 2018. Hyper-
gcn: Hypergraph convolutional networks for semi-supervised classification. CoRR,
abs/1809.02589 (2018). http://arxiv.org/abs/1809.02589. (cited on pages 19, 23, 24,
25, 35, and 95)

Yadati, N.; Nitin, V.; Nimishakavi, M.; Yadav, P.; Louis, A.; and Talukdar, P.,
2019. Link prediction in hypergraphs using graph convolutional networks. https:
//openreview.net/forum?id=ryeaZhRqFm. (cited on page 28)

Yoon, S.; Fern, A.; and Givan, R., 2008. Learning control knowledge for forward
search planning. Journal of Machine Learning Research, 9, Apr (2008), 683–718. (cited
on pages 16, 17, and 86)

Younes, H. L. and Littman, M. L., 2004. Ppddl1. 0: An extension to pddl for
expressing planning domains with probabilistic effects. (2004). (cited on pages 2
and 16)

Young, T.; Hazarika, D.; Poria, S.; and Cambria, E., 2018. Recent trends in deep
learning based natural language processing. IEEE Computational Intelligence maga-
zine, 13, 3 (2018), 55–75. (cited on page 2)

http://arxiv.org/abs/1908.01362
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1809.02589
https://openreview.net/forum?id=ryeaZhRqFm
https://openreview.net/forum?id=ryeaZhRqFm

108 Bibliography

Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R. R.; and

Smola, A. J., 2017. Deep sets. In Advances in neural information processing systems,
3391–3401. (cited on pages 59 and 91)

Zhou, D.; Huang, J.; and Schölkopf, B., 2007. Learning with hypergraphs: Clus-
tering, classification, and embedding. In Advances in neural information processing
systems, 1601–1608. (cited on page 28)

	Acknowledgements
	Abstract
	Contents
	Introduction
	Planning
	Deep Learning
	Deep Learning for Planning
	Contributions and Research Goals
	Thesis Outline

	Background and Related Work
	Planning
	Representations in Planning
	Planning as Heuristic Search
	Heuristics

	Deep Learning
	Multilayer Perceptrons
	Training a Neural Network
	Relational Inductive Biases
	Deep Learning on Graphs

	Learning for Planning

	Hypergraph Networks
	Hypergraphs
	Deep Learning on Hypergraphs
	Hypergraph Neural Networks
	HyperGCN
	Dynamic Hypergraph Neural Networks
	Other Related Work

	Hypergraph Networks (HGNs)
	Hypergraph Representation
	Hypergraph Network (HGN) Block
	Relational Inductive Biases and Combinatorial Generalisation
	Configurable HGN Blocks and Existing Models as HGNs
	Summary

	Learning Heuristics over Hypergraphs
	Delete-Relaxation Heuristics as Shortest Paths over Hypergraphs
	hmax and hadd as shortest paths over hypergraphs

	STRIPS-HGNs: a Hypergraph Network for Learning Heuristics
	STRIPS-HGN Hypergraph Representation
	STRIPS-HGN Architecture
	Combinatorial Generalisation
	Limitations of STRIPS-HGNs

	Training Algorithm
	Training Data Generation
	STRIPS-HGN Weight Optimisation

	Empirical Evaluation
	Experimental Setup
	Search Configuration
	Hypergraph Network Configuration
	Training Procedure
	Interpreting the Result Plots

	Domains and Problems
	Blocksworld
	Matching Blocksworld
	Gripper
	Hanoi
	Ferry
	Zenotravel
	n-puzzle
	Sokoban
	Multi-Domain Experiments

	Experimental Results
	Learning Problem-Size Dependent Heuristics
	Learning Domain-Dependent Heuristics
	Learning Domain-Independent Heuristics
	Discussion

	Conclusion
	Contributions
	Future Work
	Speeding up a STRIPS-HGN
	Improving the performance of STRIPS-HGNs
	Extending STRIPS-HGNs beyond STRIPS problems

	Final Remarks

	Bibliography

